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DNS, LES and Stochastic Modeling of Turbulent
Reacting Flows

Peyman Givi
Department of Mechanical and Aerospace Engineering
State University of New York at Buffalo
Buffalo, New York 14260-4400

Abstract

This is a Final Report providing a summary of accomplishments in our research
sponsored by the Office of Naval Research (ONR), Grant N00014-90-J-4013 (Young In-
vestigator Program - FY 1990) under the management of Dr. Gabriel D. Roy, Mechanics
Division, Code 1132P. The contributions made in each part of this investigation are
described, followed by a highlight of our important findings. A few of the technical
papers written in conjunction with this work are attached as appendices for those
who are interested in reviewing our work in a greater detail.

1 Introduction

The field of computational turbulent combustion has been an area of active research in
the U.S. and abroad within the past thirty years. A review of the contributions made
within this period indicates that presently there are three primary methodologies by
which turbulent flows are treated by computational simulations [1}: (1) Direct Numerical
Simulation (DNS), (2) Large Eddy Simulation (LES), and (3) Reynolds Averaged Navier-
Stokes Simulation (RANS). The procedures in following these approaches are different
and each methodology portrays some advantages and (needless to say) some drawbacks.
In the past decade, the first two approaches have been somewhat more visible. This is
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to a large extent due to dazzling rate of progress made in the supercomputer technology
and the availability of these computers to a larger number of users. However, now it can
be stated that all of these approaches are equally competent (at least in the opinion of this
PI), and an objective research effort devoted to computational turbulence should consider
all of them.

In this research, we initlated a systematic study towards extending the capabilities of
each of the three methodologies indicated above. For this purpose we concentrated our
research on both deterministic and probabilistic description of turbulent reacting flows.
The first descriptor is for DNS, the second one is for RANS and the combination of the two
is used for LES. Due to the nature of the program, several different modeling approaches
were followed and various flow configurations simulated by several different numerical
schemes were utilized. Because of the rather diverse scope of this research, it is somewhat
impossible to provide a review of all our accomplishments in a single report. Therefore,
we have selected to include some of the research papers resulting from this work as the
primary means of reporting our results (Appendix 1 - through Appendix 10). In the
sections to follow, a guideline is provided of the content of these papers. Each section
provides a summary of our important findings in each of the programs considered.

2 Mathematical Modeling of the Reactant Conversion in Ho-

mogeneous Turbulent Reacting Flows

In this work, closed form analytical expressions are obtained for predicting the limiting
rate of mean reactant conversion in homogeneous turbulent flows under the influence
of a binary reaction of the type F + rO — (1 + r) Product. These relations are obtained
by means of a “single-point” Probability Density Function (PDF) method based on the
Amplitude Mapping Closure (AMC) [2-4]. It is demonstrated that with this model, the
maximum rate of the mean reactants’ decay can be corveniently expressed in terms of
definite integrals of the Parabolic Cylinder Functions [5]. For the cases with complete
initial segregation, it is shown that the results agree very closely with those predicted by
employing a Beta density of the first kind for an appropriately defined Shvab-Zeldovich
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scalar variable. With this assumption, the final results can also be expressed in terms
of closed form analytical expressions which are based on the Incomplete Beta Functions.
With both models, the dependence of the results on the stoichiometric coefficient and the
equivalence ratio can be expressed in an explicit manner. For a stoichiometric mixture,
the analytical results simplify significantly. With the AMC, these results are expressed
in terms of simple trigonometric functions. For the Beta density model, they are in
the form of Gamma Functions. In all the cases considered, the results are shown to
agree well with data generated by DNS. Due to the simplicity of these expressions and
because of nice mathematical features of the Parabolic Cylinder and the Incomplete Beta
Functions, these models are recommended for estimating the limiting rate of mean reactant
conversion in homogeneous reacting flows [6-9]. These results also provide a valuable
tool in assessing the extent of validity of turbulence closures for modeling of nonpremixed
reacting flows. Some discussions are provided on the extension of the models for treating
more complicated reacting systems including realistic kinetics schemes and multi-scalar
mixing with finite rate chemical reactions in more complex configurations.

Key Findings

For a complete review of our findings in this part of our work, we refer to Refs. [10-13])
(please see Appendix 1 and Appendix 2). These findings are highlighted below:

o Based on the AMC a closed form expression is obtained for the limiting rate of mean
reactant conversion in homogeneous reacting turbulent flows. Our results are better than
all the other alternatives available in the literature for the past thirty years.

e Our model is valid for both stoichiometric and non-stoichiometric mixtures. This is very
encouraging since most previous closures are valid only for stoichiometric mixtures. Even
for such mixtures our results compare with DNS data better than all the other closures.




3 Johnson-Edgeworth Translation for Probability Modeling
of Scalar Mixing in Turbulent Flows

In this work, a family of PDF's generated by Johnson-Edgeworth Translation (JET) [14,
15] is proposed for statistical modeling of the mixing of an initially binary scalar in
homogeneous turbulence. The frequencies obtained by this translation are shown to
satisfy some of the characteristics of the PDF's generated by the AMC. In fact, the solution
obtained by one of the members of this family is shown to be identical to that developed
by the AMC [4]. Due to this similarity and due to the demonstrated capabilities of the
AMC, a justification is provided for the use of other members of JET frequencies for the
modeling of the binary mixing problem. This similarity also furnishes the reasoning
for the applicability of the Pearson Family (PF) [16] of frequencies for modeling of the
same phenomena. The mathematical requirements associated with the applications of
JET in the modeling of the binary mixing problem are provided, and all the results are
compared with data generated by DNS. These comparisons indicate that the Logit-Normal
frequency [17] portrays some subtle features of the mixing problem better than the other
closures. However, none of the models considered (JET, AMC, and PF) are capable of
predicting the evolution of the conditional expected dissipation and/or the conditional
expected diffusion of the scalar field in accordance with DNS. It is demonstrated that this
is due to the incapability of the models to account for the variations of the scalar bounds
as the mixing proceeds. A remedy is suggested for overcoming this problem which can
be useful in probability modeling of turbulent mixing, especially when accompanied by
chemical reactions. While in the context of a single-point description the evolution of
the scalar bounds cannot be predicted, the qualitative analytical-computational results
portray a physically plausible behavior.

Key Findings

For a complete review of our findings in this part of our work, we refer to Refs. [18] (please
see Appendix 3). These findings are highlighted below:




o For the first time, it is proven mathematically that AMC can be viewed as a particular
case of the Johnson-Edgeworth Translation (JET).

e For the first time, appropriate models are suggested for the conditional statistics of
scalars (the conditional expected dissipation and the conditional expected diffusion) in
homogeneous turbulent flows. These mathematical results have proven extremely useful
in assessing the physics of turbulent mixing 2nd also in aiding the modeling of non-
premixed reacting flow systems.

¢ In view of the similarity of JET and AMC, other simple PDF families such as those
belonging to the PF can be used for modeling of practical reacting systems.

o For the first time it is shown that none of the new mixing models are capable of capturing
the phenomenon of boundary encroachment in the scalar composition domain as as
mixing proceeds.

4 Description of Binary and Trinary Scalar Mixing by the
AMC

In this work, the AMC is used for statistical description of the mixing process by Fickian
diffusion of a stochastically distributed scalar variable. This closure is invoked in the
context of an evolution equation for the single-point PDF of the scalar from initially
symmetric binary and trinary states. In the binary case, a simple recipe is provided for
the time scaling relation which is very useful in model implementation. In the trinary
case, it is shown that after a fixed elapsed time, the PDF relaxes to a distribution similar to
that of the binary mixing. The magnitude of this time is independent of the initial extent
of departure from a binary state; however, the rate of evolution towards an asymptotic
Gaussian state depends on the level of the departure. In both cases, the closure predictions
for the scalar flatness factor and the correlation of the mean square scalar-scalar gradients
agree well with those obtained by DNS. However, some features of the results are different
from those of earlier DNS of mixing in stationary turbulence. These differences are likely
attributed to inadequacy of the AMC at the single-point level in accounting for the effects




of turbulence stretching.

Key Findings

For a complete review of our findings in this part of our work, we refer to Ref. [19] (please
see Appendix 4). These findings are highlighted below:

e Many details of binary and trinary scalar mixing in the context of both univariate and
multivariate statistical analyses are studied by PDF methods. With this study some of the
shortcomings of AMC in predicting the asymptotic stages of mixing are captured.

o For the first time a closed form mathematical expression is obtained for describing the
decay of the scalar variance for the binary mixing problem as described by AMC. In a
previous work on this topic (4] only the asymptotic asymptotic rate of this decay could
be predicted. Please note that for a closure at the “single-point” the description of the
variance is very important.

5 Modeling of Isotropic Reacting Turbulence by a Hybrid
Mapping-EDQNM Closure

In this work, a hybrid model is developed and implemented for predicting the limiting
bound of the reactant conversion rate in an isotropic turbulent flow under the influence
of a reaction of the type F + O — Product. This model is based on the AMC for the
molecular mixing of a stochastically distributed scalar, and the Eddy-Damped Quasi-
Normal Markovian (EDQNM) spectral closure [20,21] for the two-point scalar covariance.
The results predicted by this model compare well with available experimental data in
both gaseous and aqueous plug flow reactors [7,22,23] but point to the need for more
detail measurements in future experimental studies. With the implementation of the
AMC a simple analytical expression is obtained for the decay rate of the unmixedness.
This expression is very convenient and is recommended for practical applications in the
modeling and design of plug flow reactors.
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Key Findings

For a complete review of our findings in this part of our work, we refer to Ref. [24, 13)
(please see Appendix 5). These findings are highlighted below:

o For the first time the Eddy Damped Quasi-Normal Markovian (EDQNM) closure is used
for modeling of turbulent reacting systems. Its combination with AMC provides the best
agreement with laboratory data.

e The complexity of this research convinced us that we are not yet capable of using
“two-point” statistical closures for modeling of :practical” flow systems.

6 Structure of a Turbulent Reacting Mixing Layer

In this work, a monotone Flux Corrected Transport [25,26] algorithm is employed for
DNS of a three-dimensional (3D) temporally developing forced mixing layer. A chemical
reaction of the type F + rO — (1 + r) Product is considered. The objective of this study
is to examine the following specific issues pertaining to the structure of turbulent mixing
layers and flames: (1) the effects of transition on mixing characteristics of the layer,
(2) the existence and manifestation of eddy shocklets in 3D, (3) validity assessment of
the steady laminar diffusion flamelet model in depicting the compositional structure of
turbulent flames, and (4) evaluation of the basic assumptions of the approach based on
the conditional moment method for statistical description of turbulent flames. Simulation
of high Reynolds number flow allows the capturing of the cause and effects of transition
on the mixing process.

The results indicate that the pairing of large scale vortices causes the interaction of “cup”
structures which aid in the initialization of transition. Single point PDF's of the mixture
fraction, extracted from DNS data, reveal features in accord with laboratory data. In addi-
tion to reproducing many of the qualitative and quantitative results observed in previous
experiments, new insights are made as to the nature of the transition process. It is shown
that during the transition, both pure unmixed fluids and fully mixed fluids are found




with high probability throughout the entire layer. The effect of chemical heat release is to
delay the onset of pairing and the subsequent transition. In constant rate kinetics, reduced
mixing results in decreased product formation. However, in an Arrhenius reaction case,
chemical heat release causes higher local reaction rates which overcome mixing reduction
and results in a relative increase in product formation.

Atsufficiently high convective Mach numbers, (larger than 1.25) eddy shocklets are found
in 3D mixing layers. Comparison of the shocklets observed in 3D simulations with those
in two-dimensional (2D) at the same Reynolds and Convective Mach numbers indicates
that the shocklets are stronger in the 2D case.

DN results for different Damkdhler numbers, stoichiometric coefficients, and heat release
parameters are compared with prediction results based on a 1D laminar opposed jet
system. For all the flames considered, it is concluded that the performance of the steady
laminar diffusion flamelet model (SLDFM) [27-31] improves as the magnitude of either
the local or global Damkéhler number is increased. This is understandable considering
the flamelet concept is deemed valid at high but finite reaction rates. Also, as the value
of r is increased the agreement between the DNS data and the model is improved. This is
promising in view of the fact that the flame surface in typical hydrocarbon flames is at low
stoichiometric mixture fraction values. The results for both constant and Arrhenius rate
reactions with heat release show an improved agreement with the model in comparison
to those of a non-heat releasing layer. This is attributed to the effect of thermal expansion
in reducing the instantaneous scalar dissipation rate and thus increasing the magnitudes
of the local Damkd&hler number.

DNS generated results of reacting mixing layers are also used to examine the basic as-
sumption of the Conditional Moment Method CMM) [32-34]. It is shown that the neglect
of the conditional unmixedness term is acceptable. Also, the cross-stream variations of
the first order conditional moments (conditional averages) of the reacting variables can be
assumed negligible. However, higher order conditional moments of these variables show
substantial y dependence. This may lead to problems in mathematical modeling of these
higher order conditional moments for predictive assessments.




Key Findings

For a complete review of our findings in this part of our work, we refer to Ref. [35-37]
(please see Appendix 6). These findings are highlighted below:

¢ The SLDFM does not perform well in predicting the rate of mean reactant conversion in
turbulent flows under the influence of finite-rate chemical reaction.

¢ The CMM provides a better means (in comparison with SLDFM) of predicting the
compositional structure of non-equilibrium turbulent flames, but is more complicated to
use.

e The CMM is effective in predicting the first order moments, but its use for capturing the
role of higher order moments is very complicated. Some progress has been recently made
in this regard [38], but the suggested models awaits future DNS validation.

e Neither CMM nor SLDFM are effective in dealing with non-equilibrium phenomena
such as ignition and extinction. Both models can be further extended for this purpose,
but we feel that higher order methods such as single-point PDF schemes perform better.

¢ Exothermicity may actually enhance the rate of reactant conversion in turbulent flames,
even though the results of linear stability analysis indicates that mixing is reduced at
elevated exothermicity levels.

7 Compressibility and Exothermicity in a Reacting Mixing
Layer

In this work, results are provided of DNS of a 2D temporally developing high speed
mixing layer under the influence of a second-order non-equilibrium chemical reaction of
the type A+ B — Products+ Heat. Simulations are performed with different magnitudes
of the convective Mach number and with different chemical kinetics parameters for the
purpose of examining the isolated effects of the compressibility and the heat released by
the chemical reaction on the structure of the layer. A full compressible code is developed
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and utilized, so that the coupling between mixing and chemical reaction is captured in a
realistic manner. The results of numerical experiments indicate that at the initial stages
of the layer’s growth, the heat release results in a slight enhanced mixing, whereas at the
intermediate and the final stages, it has a reverse influence. The effect of compressibility is
the same in all stages of the development; increased compressibility results in a suppressed
mixing and, thus, in a reduced reaction conversion rate. Mixing augmentation by heat
release is due to expansion of the layer caused by the exothermicity, and mixing abation is
caused by suppression of the growth of the instability modes due to increased heat release
and/or compressibility. Calculations are performed with a constant rate kinetics model
and an Arrhenius prototype, and the results are shown to be sensitive to the choice of the
chemistry model. In the Arrhenius kinetics calculations, the increase of the temperature
due to chemical reaction is substantially higher than that of the constant rate kinetics
simulations. This results in a more pronounced response of the layer in all stages of the
growth, i.e., an increased thickening of the layer at the initial phase of growth, followed
by subdued thickening at later stages.

For a complete review of our findings in this part of our work, we refer to Refs. [39,40]
(please see Appendix 7).

8 DNS of Non-Circular Jets

In this work, detailed numerical experiments are conducted to study mixing and entrain-
ment properties of the flowfield produced by non-circular turbulent jets. Simulations are
conducted of jet flows originating from elliptic, rectangular, and triangular nozzles with
aspect-ratios of 1:1 and 2:1. The results are compared with those of a circular jet of the
same equivalent diameter to determine the relative efficiency of non-circular nozzles in
mixing enhancement. Flow visualization results show that for both cornered and non-
cornered jets, large scale coherent structures are formed. The shape and dynamics of these
structures depend on the azimuthal variation of the curvature of the profiles at the jet exit.
The triangular jets exhibit characteristics markedly different from the other jets. Coherent
large scale structures in these jets are quickly masked by the small scale structures formed
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at the corners. In the elliptic and the rectangular jets, the orientations of the cross-sections
are modified by the axes-switching. The rectangular jet switches its axes at a stream-wise
distance approximately twice that of the elliptic jet. This can be attributed to the effect
of the corners. Although the square jet does not show axes-switching, it is shown that a
45° rotation of its initial profile entrains considerable free-stream fluid. The triangular jets
switch their axes twice. In the isosceles triangular jet, the first axis cross-over occurs ap-
proximately twice as far downstream as that in the equilateral triangle. This is attributed
to the larger aspect-ratio of the isosceles triangular jet.

The entrainment and mixing in the near field of these jets are characterized by the aspect
ratio of the nozzle, the initial shape and dynamics of large scale vortical structures, and the
induced mean secondary flow field of the stream-wise vortices. The isosceles triangular
jet is shown to be the most efficient mixer. Analysis shows that this jet contains large
scale structures, superimposed by small scale structures produced at the corners and
a complicated pattern of stream-wise vortices. Non-unity aspect-ratio, sharp corners,
and long flat surfaces combine to make an efficient mixing configuration. In the case of
the rectangular jet, although it contains many of these features, its axes switch too far
downstream to cause significant near-field mixing. Although a non-unity aspect-ratio is
important for mixing enhancement, it is not sufficient for large entrainment in the near-
field. The square jet ranks as the second most efficient mixer. This jet produces the most
intricate network of stream-wise vortices which results in enhanced mixing. A comparison
of the flow fields produced by the two triangular jets reveals that the formation of small
scale structures at the corners does not have a significant influence in entraining free-
stream fluid. The aspect-ratio is the primary difference between these two jets. The effect
of the larger aspect-ratio of the isosceles triangular jet is to alter the vorticity dynamics in
this jet as compared to the equilateral triangular jet. This results in a different stream-wise
vorticity pattern which enhances the free-stream fluid entrainment in this jet.

The limiting rate of the reactant conversion in reacting jets in which the fuel is discharged
to ambient oxidizer is evaluated by considering the transport of a Shvab-Zeldovich scalar
variable. It is shown that the isosceles triangular jet yields the highest amount of chemical
products, whereas the circular jet yields the lowest. However, the magnitudes of the
cross-stream product density approaches a plateau in all the jets. The magnitudes at
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this plateau are approximately the same in all the jets. With the transport of the Shvab-
Zeldovich variable, a scalar core is also defined. It is shown that the 2:1 aspect-ratio
triangular jet has the shortest and the rectangular jet has the longest core.

Key Findings

For a complete review of our findings in this part of our work, we refer to Ref. [41)(please
see Appendix 8). These findings are highlighted below:

e DNS of elliptic, rectangular and triangular jets are conducted. The axis-switching
phenomenon is captured in all non-unity aspect-ratio jets and also in the equilateral
triangular jet. The square jet does not show axis-switching; however, the rotation of
its axes by 45° is shown to play a significant role in its entrainment characteristics. All
the non-circular configurations are shown to provide more efficient mixers than does the
circular jet; the isosceles triangular jet is the most efficient one. The trends observed in
DNS generated results are shown to be in accord with those in laboratory data [42,43].

9 LES of Turbulent Reacting Flows by Assumed PDF Meth-

ods

In this work, a priori and a posteriori analyses are conducted for validity assessments of
assumed PDF methods as potential subgrid scale (SGS) closures for LES of turbulent
reacting flows. Simple non-premixed reacting systems involving an isothermal reaction
of the type F + O — Product under both chemical equilibrium and non-equilibrium
conditions are considered. A priori analyses are conducted of a homogeneous box flow, and
a spatially developing planar mixing layer to investigate the performance of the Pearson
Family of PDF’s as SGS models. A posteriori analyses are conducted of the mixing layer
using a hybrid one-equation Smagorinsky/PDF SGS closure. The Smagorinsky closure
augmented by the solution of the subgrid turbulent kinetic energy equation is employed
to account for hydrodynamic fluctuations, and the PDF is employed for modeling the

12




effects of scalar fluctuations. The implementation of the model requires the knowledge of
the local values of the first two SGS moments. These are provided by additional modeled
transport equations. In both a priori and a posteriori analyses, the predicted results are
appraised by comparison with subgrid averaged results generated by DNS.

Key Findings

For a complete review of our findings in this part of our work, we refer to Refs. [44,45,13]
(please see Appendix 9). These findings are highlighted below:

o Several different PDF methods are used for the purpose of providing subgrid closures
in LES of turbulent reacting flows. Our conclusion at this point is that conventional
Smagorinsky-based closures are not suitable for LES of reacting flows and we need higher
closure levels for this purpose.

¢ Prediction of subgrid mean quantities in LES are “relatively” easy based on current
technology. However, the prediction of the second order moments is not at a satisfactory
level.

¢ The use of AMC and JET for multi-scalar mixing is difficult [4,18,46,47]. Therefore, at
this point, PF [48] provides the only PDF scheme for LES of reacting turbulent flows.

10 The Inter-Layer Diffusion Model of Mixing

A mechanistic model termed the Inter-Layer Diffusion Model (ILDM) is developed and is
implemented for the probabilistic description of scalar mixing in homogeneous turbulent
flows. The essential element of the model is based on the lamellar theory of mixing in the
context developed by Kerstein {49], and proposes that there are two distinct but coupled
mechanisms by which the mixing process is described. These mechanisms are due to: (1)
local events and (2) integrated global events. The mathematical formalities by which the
closure is invoked are described and it i~ shown that the conditional expected diffusion
of the scalar field depicted by the model depends more directly on local events. With
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the manipulation of each of these two mechanisms, several families of scalar probability
density functions (PDF's) are generated. These families include some of the distributions
generated by other mixing closures. The ILDM provides a physical format by which
these other closures can be viewed. The similarity of local events imply the similarity
of the conditional expected diffusion as generated via these models. The global events
manifest themselves by the evolution of the conditional expected dissipation, and also
the boundedness of the composition domain. While the PDF's generated in this way are
very different, their applications for modeling of mixing limited reactions do not
significantly different results.

Key Findings

For a complete review of our findings in this part of our work, we refer to Refs. {50,51]
(please see Appendix 10). These findings are highlighted below:

e A unique closure termed “The Inter-Layer Diffusion Model” (ILDM) is developed. This
model provides a unifying theorem of all available turbulent mixing closures. The model
also suggests that some of the conditions under which the comparisons made with DNS in
previous contributions are meaningless. The model suggests that several mixing scenarios
are possible. Thus, models such as AMC are not fully appropriate for general applications.

11 Visibility

In order to demonstrate our visibility in our previous ONR-supported research, here we
shall list the awards and the noticeable achievements of the personnel involved in this

program.

Research Personnel Involved

Students Graduated:
Steven H. Frankel, Ph.D. Degree in Aerospace Engineering, SUNY-Buffalo, Dissertation:
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Probabilistic and Deterministic Description of Turbulent Flows with Nonpremixed Reac-
tants, June 1993. Current position: Assistant Professor of School of Mechanical Engineer-
ing, Purdue University, West Lafayette, Indiana.

Richard S. Miller, M.S. Degree in Aerospace Engineering, SUNY-Buffalo, June 1993. Thesis:
Structure of a Reacting Turbulent Mixing Layer. Current position: Ph.D. candidate at
SUNY-Buffalo.

Senior Personnel Contributed:

Dr. Cyrus K. Madnia (Post Doctoral Fellow, October 1989 - August 1992). Ph.D. in
Aerospace Engineering from the University of Michigan in August 1989. Dr. Madnia
is currently a Research Assistant Professor at SUNY-Buffalo.

Dr. Tail-Lun Jiang (Post Doctoral Fellow, September 1990 - September 1991). Ph.D. in
Mechanical Engineering from SUNY at Stony Brook in August 1990.

Current Students Involved in ONR Research:

(1) Mr. Virgil Adumitroaie, Ph.D. candidate, Teaching Assistant, (2) Mr. Farhad A. Jaberi,
Ph.D. candidate, Research Assistant, (3) Mr. Richard S. Miller, Ph.D. candidate, Research
Assistant, (4) Mr. George Sabini, M.S. candidate, Teaching Assistant, (5) Mr. Scott W.
Foster, Undergraduate.

Awards and Honors

Promotions of the PI:

Promoted to Professor, Department of Mechanical and Aerospace Engineering, State Uni-
versity of New York at Buffalo, Buffalo, New York, September 1993.

Promoted to Associate Professor, Department of Mechanical and Aerospace Engineering,
SUNY at Buffalo, September 1991.

Appointed to Director, Computational Fluid Dynamics Laboratory, School of Engineering
and Applied Sciences, SUNY at Buffalo, September 1991.

b.2. Awards to the PI:

Presidential Faculty Fellowship, Awarded by President George Bush, The White House
(1992-1995).

Research profile, interests and achievements published in several newspapers and maga-
zines in U.S,, Canada, Europe and Asia. Also interviewed in several radio broadcasts.

Biographical data recorded in American Men and Women of Science, 18th edition (1992-1993).
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Awards to Students:

Mr. Richard S. Miller, First Prize winner at the Graduate Technical Paper Competition
of AIAA Northeast Regional Student Conference. Title of paper: “The Manifestation of
Eddy Shocklets and Laminar Diffusion Flamelets in a Shear Layer,” April 1992.

Mr. Steven H. Frankel, Second Prize winner at the Graduate Technical Paper Competition
of AIAA Northeast Regional Student Conference. Title of paper: “Probabilistic and
Deterministic Description of Turbulent Flows with Nonpremixed Reactants,” April 1992.

Mr. Richard S. Miller, winner of Abe M. Zarem Award for Distinguished Achievement
in Aeronautics. This award is in relation to Mr. Miller’s AIAA paper entitled: “The
Manifestation of Eddy Shocklets and Laminar Diffusion Flamelets in a Shear Layer,” 1993.
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In a recent article, Dutta and Tarbell (1989) made a com-
parative study of several turbulence closures for predicting the
mean rate of reactant conversion in a chemical reaction of the
type A + B—products in homogeneous turbulent flows. In this
work, we use recent developments in the approach based on
the probability density function (PDF) method for treating the
problem considered by Dutta and Tarbell (1989). With this
method, we propose a simple algebraic relation for predicting
the limiting rate of mean reactant conversion. The PDF model
is based on the amplitude mapping closure (AMC) of Kraich-
nan (Kraichnan, 1989; Chen et al., 1989), whose superiority
has been demonstrated in a number of validation studies (Pope,
1991; Gao, 1991; Frankel et al., 1992, Chen et al., 1989; Mad-
nia et al., 1991b; Madnia et al., 1992). In accordance with the
problem discussed by Dutta and Tarbell (1989), we consider
a stoichiometric mixture with initially segregated reactants.
This is convenient for expressing the final results in a simple
algebraic form. However, it is understood that the AMC can
be employed for modeling of nonequilibrium chemically re-
acting flows under arbitrary initial conditions (Pope, 1991).

For comparison, in addition to the closure of Toor (1962)
and the three-environment (3E) model of Dutta and Tarbell
(1989), several other closures are also considered. These are
the PDF methods based on the generalized coalescence/dis-
persion (C/D) models and those based on ‘‘assumed’’ fre-
quencies. For the C/D models, the closures of Curl (1963),
and Janicka et al. (1979) are examined. The assumed distri-
butions are based on the beta density of the first kind (Pearson,
1895) and the Logit-normal density (Johnson, 1949a). The
applicability of these assumed densities for the problem under
consideration has been ascertained by Madnia et al. (1991a)
and Miller et al. (1993). Finally, to assess the performance of
the models, the results predicted by all the closures are com-
pared with those generated by direct numerical simulations
(DNS). These simulations have proven very effective in vali-
dation studies of turbulent reacting flows (Eswaran and Pope,
1988; Givi and McMurtry, 1988; Givi, 1989; Leonard and Hill,
1991) and provide a useful tool in model assessments of the
type pursued here.
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Formulations and Model Presentation

With the assumption of an infinitely fast chemistry, all the
pertinent statistics of the reacting field are related to those of
an appropriate conserved scalar variable, hereby denoted by
9 (Hawthorne et al., 1949; Bilger, 1980). Under this assump-
tion, in a stoichiometric mixture, the single-point PDF of the
reacting scalar is related to that of the conserved scalar by
(Bilger, 1980; Kosaly and Givi, 1987):

v+1

1 1
G’A(#ut)=§ ®, (T') +3 8y, 1>¢>0. ')

Here, & denotes the delta function. Therefore, based on Eq.
1, if the PDF of the conserved scalar is known, all the statistical
information regarding the reacting scalars 4 and B is available.

CID Closures

The C/D models consist of PDF transport equations, in
which the effects of molecular mixing are modeled in terms
of a particle-pair interaction process. The most general form
of the model can be expressed by the evolution equation (Pope,
1982; Kosaly and Givi, 1987; Dutta and Tarbell, 1989):

dv'dy" e’ NP .1

aogf.t) = = 280®(Y.1) + 25“’5 :_ S -

wa(a)&[\#—(l —aly’ -%a(\lf'ﬂlf')]- )

In this equation, the random variable a€[0,1} and the kernel
G(a) controls the extent of mixing. The parameter 8 is the
controlling factor which yields the same variance for all mem-
bers of the C/D family and w is the mixing frequency (Pope,
1982). Different C/D closures are obtained by different choices
for the function @(«r). This function is nonzero, nonnegative
and normalized to unity within «€[0,1]. Some of the more
widely utilized members of the C/D family are the models of
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Curl (1963) and Janicka et al. (1979), and the LMSE closure
of O’Brien (1980). These closures imply, respectively,
Qa)=8a~1), @A(a)=1, and Q(a)=Lim,_,Ma - €). For the
problem under consideration, the results obtained from the
LMSE model are identical to those based on Toor’s hypothesis
(Kosaly and Givi, 1987).

With a combination of Eqs. 1 and 2, the mean reactant
conversion rate is determined from the knowledge of @ ,(y)
[or ®z(¥)). The numerical solution of the C/D transport equa-
tion (Eq. 2) can be obtained by Monte-Carlo methods (Pope,
1981).

Mapping Closure

The amplitude mapping closure (AMC) involves the map-
ping of the scalar field of interest to a Gaussian reference field.
The knowledge of this mapping allows determination of the
scalar PDF (Chen et al., 1989; Pope, 1991). For the binary
problem under consideration here, the solution for the map-
ping function has been obtained by Pope (1991) and the re-
sulting PDF is of the form:

O(W)=—1= exp [— [12— l][erf"(zw— 1)1’} &)
V2 2 ’

where the parameter 4 depends on the missing two-point in-
formation and is not known a priori in the context of a single-
point description. It is convenient to relate this parameter to
the variance of the conserved scalar. This relation has been
established by Jiang et al. (1992):

L a1 2

2
_— —_— 4
2(0) arctan ( > ) N 4)

where I, is known as the ‘‘intensity of segregation’’ (Brodkey,
1975). The parameter v can also be related to the ensemble-
mean value of the reacting scalar. This relation is obtained by
substituting Eq. 3 into Eq. 1. After significant algebraic op-
erations, the final results yield (Frankel, 1993):

2 arctan (—l)
A V2
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Now, with the establishment of Eqs. 4-5, the mean fractional
conversion can be expressed in terms of I,

__$AN) _E . | ®
F=1 __<A>(O)_l xarcsm( sln[z]) 6)

Assumed Frequencies

Miller et al. (1993) have recently shown that for the binary
mixing problem considered here, the AMC can be viewed as
a member of the general family of distributions generated by
the Johnson-Edgeworth transformation (JET) (Johnson,
1949a; Edgeworth, 1907). With this transformation, alterna-
tive frequencies can be developed for the modeling of turbulent
mixing. One such frequency that has proven effective is the
**Logit-normal’’ distribution (Miller et al., 1993):
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where 4, analogous to v in the AMC, is not known a priori.
For this PDF, neither the variance nor the reactant decay can
be determined analytically, and their evaluation is possible
solely by numerical means (Johnson, 1949a).

The similarity between the Logit-normal distribution and
the family of Pearson (1895) frequencies suggests the use of
the beta density of the first kind as a potential assumed PDF
for the modeling of the mixing phenomena. For a random
scalar variable within [0,1], this density is parameterized by
its first two moments (Casella and Berger, 1990):

T'(B, +B2)

FNT: RS PR AT ey
CW) =y (1 -y)7 TGIT Gy
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where I' is the Gamma function (Abramowitz and Stegun,
1972), and 8, and §, are determined from the first two moments
of the random variable. With a combination of this equation
and Eq. 1, the mean fractional conversion can be obtained
analytically. Following the same procedure as that for the
AMC, the final result after some manipulations can be ex-

pressed as:
I
"(z)

l—_———\[;r(i l) 9

2,73

F=

Comparisons

The relations for the mean fractional conversion obtained
by the models described above are compared with those ob-
tained by employing the 3E model of Dutta and Tarbell (1989)
and Tarbell (1992):

F=—r—r (10)

1-I
141

and that based on Toor’s hypothesis (Toor, 1962, 1975):
F=1-+T. (11)

To examine the performance of the models, the predicted re-
sults via all the closures are compared against DNS data. The
DNS procedure is similar to that of previous simulations of
this type (Givi and McMurtry, 1988; Madnia and Givi, 1993).
The subject of the present DNS is the three-dimensional pe-
riodic homogeneous box flow under the influence of a binary
reaction of the type described above. The initial species field
is assumed to be composed of out-of-phase square waves for
the two reactants A and B. The computational package is based
on the modification of a spectral-collocation procedure using
Fourier basis functions developed by Erlebacher et al. (1987,
1990a, 1990b). The hydrodynamic field is assumed isotropic
and is initialized in a similar manner to that of Erlebacher et
al. (1990a). The turbulent field is of a decaying nature in that
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there is no artificial forcing mechanism to feed energy to low
wave numbers. The code is capable of simulating flows with
different levels of compressibility (Erlebacher et al., 1990b;
Hussaini et al., 1990). Here, only the results obtained for a
low compressible case are discussed, since most previous anal-
yses of plug-flow reactors have dealt primarily with incom-
pressible flows (Toor, 1975; Hill, 1276; Brodkey, 1981; Leonard
and Hill, 1991). The resolution consists of 96 collocation points
in each direction. Therefore, at each time step 96 is the sample
size for statistical analyses. This resolution allows simulations
with a Reynolds number (based on the Taylor microscale) of
Rey, = 41. The value of the molecular Schmidt number is set
equal to unity.

The PDFs generated by the AMC, JET, and the beta density
are somewhat similar. For the binary mixing problem, all these
models are capable of predicting the PDF evolution from an
initially double delta state (segregated reactants) to an asymp-
totic Gaussian-like distribution near the mean at small vari-
ances. This behavior cannot be predicted by any of the other
closures considered here.

Figure 1 shows the temporal variation of the fractional con-
version for these three models along with the DNS data. All
these closures yield almost identical results and exhibit good
agreement with the DNS data during all stages of the mixing
process. In light of this, to compare with the other closures,
only the AMC is considered, as shown in Figure 2. At large
times, the profiles are bounded above and below by the 3E
model and the Toor closure, respectively. Initially, the results
via the 3E closure are very close to those obtained by AMC.
At all times, the results generated by the num~rical integration
of the C/D models of Curl (1963) and Janicka et al. (1979)
overpredict the DNS data more than the simple expression
generated by the AMC. Finally, as indicated before, the results
obtained by LMSE are identical to those based on Toor’s
hypothesis. These comparisons indicate that the AMC, the beta
density, and the Logit-Normal distribution yield the best over-
all behavior in predicting the rate of reactant conversion in
accordance with the DNS data. This agreement follows from
the compatibility of the model PDFs with those of the DNS,
at least for the case of binary mixing considered here. Fur-
thermore, a nice feature of these models is the explicit form
of the final equations expressing these statistical quantities. It
is noted that explicit analytical relations can be obtained only
for the AMC and the beta density. Therefore, in the absence
of better alternatives Eqs. 6 and 9 are recommended for ef-
fective and practical modeling of unpremixed plug-flow re-
actors.

Despite the favorable features of our simple mathematical
expressions, the ramifications of the assumptions made in de-
riving these expressions must be emphasized. First, due to the
assumption of infinitely fast chemistry, only the limiting rate
of reactant conversion is obtained. The extensions to finite
rate chemistry, reversible reactions, and multistep kinetics sys-
tems require numerical integration of the PDF. For these cases,
the implementation of AMC for the binary case is straight-
forward, since it provides a closure for the joint PDFs of the
scalar quantities (Pope, 1991). However, the validity of a mul-
tivariate beta (usually known as the *‘Dirichlet’’ (Johnson and
Kotz, 1972; Wilks, 1962)) distribution and multivariate forms
of the JET generated frequencies (Johnson, 1949b) cannot be
guaranteed for general applications. Secondly, the simple for-
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Figure 1. Fractional conversion vs. normalized time.

mulas presented here are valid only for initially segregated
reactants in stoichiometric proportion. This condition is com-
patible with the majority of previous works on nonpremixed
plug-flow reactors (Toor, 1975; Brodkey, 1981; Leonard and
Hill, 1988; Kosaly and Givi, 1987; Givi and McMurtry, 1988;
Givi, 1989). The AMC and the beta density can be used for
modeling nonstoichiometric mixtures, but the final results can
be evaluated only by numerical means. For more complicated
initial conditions, the use of beta and JET generated frequen-
cies cannot be justified, while the AMC can be utilized in
conjunction with appropriate numerical algorithms (Pope,
1991; Valifio et al., 1991). Finally, in the context of a single-
point PDF formulation, there is no information pertaining to
the evolution of the relevant turbulent length scales. Therefore,
the final expressions can be only presented in terms of 7, or
other related physical parameters (such as, %, v, and A). In
this context, these parameters must be provided by external
means, including experimenta! data and turbulence models
(Frankel et al., 1992). Also, in nonequilibrium reacting sys-
tems, the segregation parameter should be defined to include
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Figure 2. Fractional conversion vs. normalized time.
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the information pertaining to the length-scale evolution of the
reacting scalar.

In spite of these assumptions, it is very encouraging to have
physically plausible algebraic relations for direct and accurate
estimate of the reactant conversion rate in plug-flow reactors.
Because of the simplicity of our final results, these expressions
are recommended for routine and economical engineering pre-
dictions in nonpremixed binary reacting systems such as those
in batch mixers.
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Notation

A, B reactant concentration

@ = kernel of the C/D closure
I, = intensity of segregation

9 = conserved scalar variable
F = fractional conversion
L= time

-

normalized time = — In[d’(1)/c*0))

Greek letters

Delta function

parameter of Logit-normal distribution
parameter of the AMC closure

gamma function

variance of the conserved scalar variable
fiequency of mixing

[ VI TSI S

Subscripts
0 = time zero (inlet of plug-flow reactor)

Other symbol
¢ ) = ensemble average
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Abstract. Closed form analytical expressions are obtained for predicting the limiting rate of mean
reactant conversion in homogeneous turbulent flows under the influence of a binary reaction
of the type F +rO —(1 +r) Product. These relations are obtained by means of a single-
point Probability Density Function (PDF) method based on the Amplitude Mapping Closure
{Kraichnan, 1989; Chen et al., 1989; Pope, 1991). It is demonstrated that with this model, the
maximum rate of the mean reactants’ decay can be conveniently expressed in terms of definite
integrals of the parabolic cylinder functions. For the cases with complete initial segregation, it is
shown that the results agree very closely with those predicted by employing a beta density of the
first kind for an appropriately defined Shvab-Zeldovich scalar variable. With this assumption, the
final results can also be expressed in terms of closed form analytical expressions which are based
on the incomplete beta functions. With both models, the dependence of the results on the
stoichiometric coefficient and the equivalence ratio can be expressed in an explicit manaer. For a
stoichiometric mixture the analytical results simplify significantly. In the mapping closure these
results are expressed in terms of simple trigonometric functions. For the beta density model they
are in the form of gamma functions. In all the cases considered, the results are shown to agree
well with data generated by Direct Numerical Simulations (DNS). Due to the simplicity of these
expressions and because of nice mathematical features of the parabolic cylinder and the
incomplete beta functions, these models are recommended for estimating the limiting rate of mean
reactant conversion in homogeneous reacting flows. These results also provide a valuable tool in
assessing the ext=nt of validity of turbulence closures for the modeling of unpremixed reacting
flows. Some discussions are provided on the extension of the models for treating more complic-
ated reacting systems, including realistic kinetics schemes and multiscalar mixing with finite rate
chemical reactions in more complex configurations.

Nomenclature
a, b, c: some constant. Da: the Damkaohler number.
B: the beta function. F: fuel
9: the parabolic cylinder function. 9. the parameter in the mapping closure.
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g: half the inverse of the normalized variance .#:  the PDF. l
of the Shvab-Zeldovich variable. r: the stoichiometric coeflicient.
H: the Heaviside function. t: the physical time.
#: the incomplete beta function. W: the area weight of the reactant. I
J: the Shvab-Zeldovich variable. y: the dummy variable of integration.
0: the oxidizer. Z: the unmixedness ratio.
Greek Letters l
By Bs....: parameters of the beta density. @o: the composition space for a Gaussian l
y: the equivalence ratio. reference field.
I:  the gamma function. 7: the normalized time.
6: the delta function. x: the mapping function.
&: the composition space for the PDF.
Subscripts .
0: time zero (inlet of plug flow reactor). st: stoichiometric.
G: Gaussian. l
Other symbols l
¢ >: the probability average. " the fluctuation for the ensemble mean.
1. Introduction '
For the past 40 years, since the early work of Hawthorne et al. (1949), estimation of the mean
reactant conversion rate has been the subject of wide investigations in mathematical modeling of
turbulent reacting flows. In unpremixed reacting systems, including diffusion flames, there are two :
factors by which this rate is influenced: (1) the speed at which the reactants are brought into the
reaction zone, and (2) the rate at which they are converted to products through chemical reactions. '

The relative importance of the two mechanisms is characterized by magnitude of the Damkdohler
number (Da), which is the ratio of the characteristic frequency of the chemical reaction to that of the
hydrodynamics. The role of the Damk&hler number in the characterization of reacting flows is very
important (Williams, 1985). In the limit of Da — oo, the rate of reactant consumption is governed by
the hydrodynamics, i.e., the reaction is “mixing controlled” and is determined by the speed at which
the reactants are brought into an infinitely thin reaction zone (Bilger, 1980). Obviously, with the
assumption of an infinitely fast chemistry, it is not possible to account for many interesting issues l
associated +ith nonequilibrium effects in unpremixed flames (Libby and Williams, 1980). However, as
indicated in the original pioneering work of Toor (1962), and later by O’Brien (1971) and Bilger
(1980), it is very important to have a prior estimate of the “limiting” rate of mean reactant conversion '
in practical modeling of combustion systems. In this limit the problem reduces to the simpler problem

of “mixing,” in which its analysis is much simpler (Toor, 1962, 1975).

Development of an appropriate turbulence model which can predict the mean rate of reactant
conversion has been the subject of extensive investigations (for reviews see Toor, 1975; Brodkey, 1981; l
Libby and Williams, 1980; Williams, 1985). Amongst the theoretical tools developed, it is now firmly
accepted that the approach based on the single-point Probability Density Function (PDF) of the .
scalar quantities is particularly useful, and this approach has been very popular for modeling the l
reactant conversion in a variety of turbulent reacting flow systems (Kollmann, 1990; Pope, 1985, 1990,

1991). The advantage of PDF methods is due to their inherent capability to include all the single-
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point statistical information pertaining 1o the scalar field. Therefore, once the PDF (or the joint PDF)
of the scalar variables is determined, all the relevant one-point statistics of the field are available
without need for additional closures.

The most logical and systematic means of determining the PDF involves the solution of an
appropriate transport equation governing its evolution. In this equation, due to the nature of the
formulation, the effects of chemical reaction appear in a closed form (Pope, 1976), regardless of its
degree of complexity. However, the influences of molecular action cannot be fully described, and can
be treated only by means of employing an appropriate closure. As noted by Pope (1991), in most
previous applications this problem has been circumvented through the use of the Coalescence/
Dispersion (C/D) models. Examples of such models are the early C/D prototype of Curl (1963), the
Linear Mean Square Estimation (LMSE) theory (O'Brien, 1980), the closure of Janicka et al. (1979),
among others (Pope, 1982, 1985; Kosaly and Givi, 1987, Givi, 1989; Dutta and Tarbell, 1989).
Despite their advantageous characteristics, the shortcomings associated with the C/D closures in the
probabilistic description of scalar transport are well recognized. Namely, none of the aforementioned
models predict an asymptotic Gaussian distribution for the PDF of a conserved scalar variable in
homogeneous turbulence (Pope, 1982, 1991; Kosaly and Givi, 1987); and those which are capable of
doing so (e.g., Pope. 1982), do not predict the initial stages of mixing correctly (Kosaly, 1986; Kosaly
and Givi, 1987).

Recent development of the Amplitude Mapping Closure by Kraichnan and coworkers (Kraichnan,
1989; Chen ez ul.. 1989) (see also Pope, 1991) has provided a promising way of alleviating some of the
problems associated with the C/D closures. This closure, in essence, provides a means of accounting
for the transport of the PDF in composition space, and its validity and physical applicability
have been evidenced in a number of comparisons against data generated by means of both direct
numerical simulations (Pope, 1990, 1991; Gao, 1991a,b, Madnia et al., 1991b; Jiang et al., 1992) and
laboratory experiments (Frankel et al., 1992a). These results suggest that, at least in the setting of an
isotropic turbulent flow, this closure has some superior features over all the previous C/D-type
models.

Based on this demonstrated superiority, our objective here is to examine further the properties of
this closure and to assess its capabilities for applications in modeling of unpremixed turbulent
reacting flow systems. In particular, it is intended to provide a reasonably simple recipe that can be
used in conjunction with this closure for predicting the limiting rate of mean reactant conversion.
However, since this is the first study of this type, and due to mathematical complexities (that soon
become apparent), we have made some simplifying assumptions which are indicated here. Firstly, we
consider an idealized irreversible binary reaction of the type F + rO — (1 + r) Product with initially
segregated reactants (F and O). In accordance with the discussions above, only the maximum rate
of mean reactant conversion is considered. Secondly, the turbulence field is assumed statisticaily
homogeneous. Thirdly, all the chemical species are assumed to have identical and constant thermo-
dynamic properties. Finally, the flow field is assumed isothermal in which the dynamic role of the
chemical reaction on the hydrodynamic field is ignored.

With all these assumptions, the reacting system considered is obviously an idealized prototype of
conventional combustion systems. However, it does provide a good model for dilute reacting systems
in typical mixing controlled plug flow reactors (Toor, 1962, 1975; Bilger, 1980; Hill, 1976; Brodkey,
1981). Moreover, because of the mathematical complexities, even in this simple case, it is deemed
necessary to analyze this simplified system before considering more complex scenarios. Nevertheless,
the model is capable of accounting for arbitrary values of the stoichiometric coefficients and for any
equivalence ratio. This allows the capture of many interesting features, as will be demonstrated.

For the idealized case of initially segregated reactants, the initial marginal PDFs of their
concentrations are composed of “delta functions.” Therefore, it is speculated that the approach based
on an assumed probability distribution may also provide a reasonably good closure. Therefore, in

* addition to the mapping closure, a member of the family of Pearson frequencies is also considered.

The results obtained by this frequency are compared with those of the mapping closure,”and are also
assessed against data generated by means of DNS.

In the next section the problem under consideration is outlined along with the mathematical basis
by which the single-point PDF methods are used. In Section 2.1 the salient features of the mapping
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closure at the single-point level are analyzed including a discussion on the formalities of the closure
for our purpose. With this closure, a closed form analytical expression is provided for the limiting
bound of the mean reactant conversion. This limiting rate is also predicted by means of the beta
density model in Section 2.2. In both these subsections the simplifications for the case of a stoichio-
metric mixture are made, motivating the use of our final “simple” analytical expressions in practical
modeling of stoichiometric plug flow reactors. In Section 3.1 the results predicted by both models are
compared against those generated by DNS of a three-dimensional homogeneous turbulent flow. In
Section 3.2 some discussions are presented highlighting the implications of these results in turbulence
modeling. This paper is drawn to a close in Section 4 with some discussions for possible future
extension of the two models for the statistical description of more complicated chemically reacting
turbulent flows.

2. Formulation

With the assumptions described in the introduction, the statistical behavior of the reacting field in the
reaction F + rO — (1 + r) Product can be related to the statistics of an appropriate conserved Shvab-
Zeldovich mixture fraction, # (Bilger, 1980). This mixture fraction can be normalized in such a way to
yield values of unity in the fuel F stream and zero in the oxidizer O stream. For the purpose of
statistical treatment, we define Zr(¢, 1), Zp(E, 1), and 2,(L, 1), respectively, as the marginal PDFs of
the concentration of F, the concentration of O, and the Shvab-Zeldovich variable #. For initially
segregated reactants with no fuel in the oxidizer stream (and vice versa), the initial conditions for the
marginal PDFs of the concentrations of the two reactants are given by

Zp(£, 0) = Wpd(E — F) + Wod(2),
Pol3,0) = Wpd(§ — 0) + Wpd(8), O0s<i<l.

Here, F, and O, denote the initial concentrations of the two species in the two feeds, and W, and W,
represent the relative weights of the reactants at the initial time (i.e., the area ratios at the inlet of a
plug flow reactor). With the normalized value of the concentrations equal to unity at the feeds, i.c.,
F, = 0, = 1, the stoichiometric value of the Shvab-Zeldovich variable, %, is determined from the
parameter r. With the assumption of an infinitely fast chemistry, the marginal PDFs of the reactants’

concentrations are related to the frequency of the Shvab-Zeldovich variable (Bilger, 1980; Kosaly and
Givi, 1987):

(1)

?F(é’ t) = (1 - }sl)?}(fs( + C(‘ - jsl): t) + 9;(‘)5({),

@
PolS, 1) = FuZ 4 (Sull = ), 1) + 85(1)4(8).

Here, £ > 0 and

EA
9¢(t) = J Py 1) d2,
- (3)
3olt) = L PyE 0 dE =1 = 3:(0)

The initial condition for the PDF of the Shvab—Zeldovich variable is given by
P4, 0) = Wed(E — 1) + Wod(§). )

Equation (4) implies that (#)(t = 0) = W;. Since # is a conserved variable, its mean value remains
constant, i.e, {F)(1) = {F>(0) = Wr. The integration of (2} yields the temporal variation of the
statistics of the species field at all times, if the PDFs of # are known. As indicated above, in the

setting of a mixing controlled reaction this PDF provides all the desired statistical properties of the
reacting field.

2.1. Amplitude Mapping Closure

The implementation of the amplitude mapping closure involves a mapping of the random field of
interest £ to a stationary Gaussian reference field ¢,, via a transformation ¢ = y{(¢,, t). Once this
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relation is established, the PDF of the random variable &, (&), is related to that of a Gaussian
distribution. In homogencous turbulence, the transport equation for this function satisfies (Chen et al.,
1989; Pope, 1991)

ox oy %y
TN T ©

In this equation, t is a normalized time within which the scalar length scale information is embedded.
The relations between this time and the physical time, i.e.,, t(t), cannot be determined in the context of
single-point PDF description and must be provided by external means (Pope, 1990; Jiang et al., 1992).
For the case considered here, with the initial PDF of the variable # given by (4), the corresponding
form of the initial mapping is

X(@0, 0) = H(pp — 0*), -0 < @p < O, (6)

where H is the Heaviside function and ¢* is a measure of the initial asymmetry of the initial PDF
around the ensemble mean of the variable ¢:

0* = J2erf ™ (1 - 2( £, 7

where “erf” denotes the error function. The mapping function is obtained by solving (5) subject to
initial condition (6). The general solution of this equation has the form (Gao, 1991a)

/42 Y 2
)=Y "o + 1 J x(y,O)exp[ @oe” — ) (Hg)]dy, (®)

X(®o, T

292
where 4(1) = /exp(27) — 1. Insertmg (6) for x(¢o, 0) in (8), we have
X(@o, 1) = 4[1 + erf(ag, + )], 9
where
_ 2
o) = ——, bg=—21*9 (10)

V2%’ 2%

Finally, the solution for the PDF of # is determined directly from the mapping relation between
the physical field ¢ and the Gaussian reference field @,:

-1
2, (x(¢0, D7) = %(wo)(%) . ()

Here, #; denotes the PDF of a standardized Gaussian distribution, i.e., Z5(¢,) = (1/3/2n) exp(— @3/2).
A combination of (11) and (9) yields the final result for the PDF of the Shvab-Zeldovich variable:

(0oe ™ — 0% _ @3
2(1 —e™%) 2 ¥

With a combination of (12) and (2), all the pertinent single-point statistics of the reacting field are
determined. The most important of these statistics are the ensemble mean values of the reactants’
concentrations. These mean values are obtained directly by integrating their respective PDFs. The
intermediate steps in deriving these relations are not presented but are provided by Frankel (1992).
Here, only the essential steps are presented. For the mean fuel concentration, {F), the first part of (2)
reads

24(1(P0, 1) 7) =% exp[ (12)

a

1
(Fi(1)= I F($)2,¢&, 1) de = F(x{(¢o, 1) 1)P6(9o) dgo, (13)
I ®olx=JS)

where the lower limit of the last integral corresponds to the value of @, at which g is equal to the
stoichiometric value. of the Shvab-Zeldovich variable. Evaluating this limit from (9), equation (13) can
be analytically integrated. This is possible by representing the error function in the form of
its definition, and performing the resulting definite, double exponential integral. The results after
extensive algebraic manipulations yield

_(1-24) (b/a + c)] ! (_i_f_’ _E)e 14
)= gl 1+ et Nt AT 0
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Similar expressions can be obtained for the mean oxidizer concentration:

o B bja+c\] _ 1 __bz ¢t be
AR B R O 2

In these equations, c¢ is related to the stoichiometric coefficient,

c= %Cﬂ"l(zlu -1, (16)
and
N P SRR
¥s = F2acy? - ;bi - 2.

Here, 2_, and 2., are, respectively, the parabolic cylinder functions of order —2 and -1,
belonging to the family of degenerate hypergeometric functions (Abramowitz and Stegun, 1972).

Due to nice properties of the degenerate hypergeometric functions, many of the interesting features
of (14) and (15) can be depicted. First, simple manipulation of this equation shows that for a
stoichiometric mixture, { #) = #,,, both reactants decay at the same rate, i.c.,

PO _ 0
F>@)=W; <050 = Wo'

and for a nonstoichiometric initial condition, the limits of the concentration values as t, ¥ — o,
asymptote to

fO, ,ﬂ‘?.(j)'

Lim (FY@) =9 <S> - A FuS ()

9= Tog RV
: A (18)
0, Fu<<{F),

Lim <O) (1) = '

Lim <0>() = 5 l_%, Fu2 (I

These limits are obtained by employing the Taylor series expansion of the relevant functions as
% — 0, and indicate the limiting bound of the concentrations of the unconsumed reactants in both
fuel-rich and fuel-lean mixtures. While these limiting behaviors are rather trivial from a physical
standpoint, in a computational procedure it must be made sure that they are satisfied. Because of the
mathematical properties of the parabolic cylinder functions, these limiting cases can be realized in
our computational procedure in a relatively easy manner. It would be very difficult to obtain these
limiting behaviors numerically in an integration procedure within the original unbounded domain.

At first glance, (14) and (15) may appear somewhat complicated. However, due to nice mathe-
matical properties of the parabolic cylinder functions (Abramowitz and Stegun, 1972), these
equations can be integrated rather easily within the finite domain (0 <y < 1). For fuel-lean or
fuel-rich mixtures, the integration can only be done by means of employing numerical methods.
However, for a stoichiometric mixture, the results simplify further as demonstrated below.

Stoichiometric Mixture. For practical applications in stoichiometric plug flow reactors, the equations
simplify considerably. For a stoichiometric mixture, and an initially symmetric PDF around the mean
value (i.e., {f) = £, = 1), both parameters b and ¢ are zero. Under this condition, the first terms on
the right-hand sides of (14) and (15) drop. Knowing 2_,(0) = 2_,(0) = 1, the remaining terms yield

(Fy(vy oY) _ 1 J‘ dy _,_2arctan ()
(FYO)  <0>0) n/2alo 2v* +1/a* n

(19
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The simplicity of this equation is noteworthy and very pleasing. Because of this simplicity, (19) is
strongly recommended for engineering predictions of the mean reactant conversion rate in stoichio-
metric homogeneous flows, such as the plug flow reactors considered in numerous previous investiga-
tions (Toor, 1962, 1975; Brodkey, 1981; Hill, 1976; O’Brien, 1971; Kosaly and Givi, 1987).

2.2. The Beta Density Model

For initially segregated reactants, the initial PDF of the Shvab-Zeldovich variable is composed of
two delta functions at the extreme limits of the variable. Therefore, it is proposed that the family of
Pearson (1895) frequencies may provide a reasonable means of estimating this distribution at all times
(Frankel et al., 1991; Girimaji, 1991a). The appropriate form of the Pearson distribution is in this case
the beta density of the first kind. This density has been employed in the statistical description of
turbulent reacting flows by Rhodes (1975), Jones and Priddin (1978), Lockwood and Moneib (1980),
Peters (1984), and Janicka and Peters (1982) amongst others (for recent reviews, see Givi, 1989;
Priddin, 1991). For an initially nonsymmetric PDF, the beta density corresponds to Pearson Type I
and for the symmetric case to Pearson Type 1I. The relevance of the latter in modeling of molecular
mixing from an initial symmetric binary state has been described by Madnia et al. (1991a) and
Girimaji (1991a). In both cases the PDF of the Shvab-Zeldovich variable is represented by
(Abramowitz and Stegun, 1972)

= __l___. 75 V4 21 <
24) B(ﬁl,ﬂz)é =gy, o0<ic<l, (20)
where B(f;, B,) denotes the beta function, and the parameters B, and B, are dependent on the mean
and the variance of the random variable #. In applications to the mixing controlled reaction
considered here, we assume that the PDF of the Shvab-Zeldovich variable always retains a beta
distribution. Thus all the statistics of the reacting scalar are subsequently determined. The ensemble
mean values are determined by a combination of (20) and (2). Following the same procedure as that

described in the section on the mapping closure, after some manipulations the final results can be
expressed as (Frankel, 1992)

Pi(1 — 2—1 1
Fyy = TR0 =SS ( L2 —J..)u—J,,(ﬂ,,m @)

(B, + B)B(By, By) 1= Fu\Bi + B,
T g ( B )
0= (B, + B2)B(By, B>) ! (By + B2) A Ialbr: B @)

where # denotes the incomplete beta function (Abramowitz and Stegun, 1972).

Due to nice mathematical properties of the beta function, the final results are cast in terms of its
integral. In this case, however, the integral can be expressed in terms of the incomplete beta function.
The mathematical properties of this special function are well known, and the expressions above
are conveniently amenable to numerical integration (Frankel, 1992). Again, the physical limiting
conditions discussed before are realized by (21) and (22). That is, in a stoichiometric mixture, both

reactants decay at *he same rate; and in lean or rich mixtures, the same limiting conditions as those in
(18) are realized.

Stoichiometric Mixture. Again, in the case of an initially symmetric PDF under stoichiometric
conditions, the final expressions become simpler. Under this condition, B, = 8,, and knowing
J12(x, x) = 1, (21) and (22) reduce to
CFY® _<0y® _ 1 _T(g) @3
KFX©0) <050  /aT@+d’

where g is half the inverse of the normalized variance of the Shvab-Zeldovich variable, and I" denotes
the gamma function.

3. Results

The final forms of (14), (15), (19), (21), (22), and (23) are gratifying since they provide a relatively
simple and effective means of estimating the maximum rate of mean reactant conversion in homogen-
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cous reacting flows. As indicated belore, the ma hematical operations leading to these equations are
somewhat involved, but the final results can be conveniently expressed in terms of known special
functions. However, since both models are based on single-point PDF descriptions, these equations
are not in a complete closed form and are dependent on the parameters g and/or . In this context
this parameter cannot be determined by the model and must therefore be specified by external means
(Pope, 1991; Jiang et al., 1992; Frankel et al, 1992a). This deficiency is not particular to the two
models considered here, and exists in any single-point statistical description, including all of those
based on the C/D models.

The extent of validity of these simple relations can be demonstrated by a comparison between the
model predictions and the data obtained by means of DNS. The comparison is made here for several
values of {#) and #, for the purpose of demonstration. In this comparison the magnitudes of the nor-
malized variance of the Shvab-Zeldovich variable are matched with those of DNS. This implies that,
for given values of (#) and £, the parameters g, 4, f,, and 8, are provided externally from the DNS
data. With this provision, the model prediction results can be directly assessed against DNS data.

The DNS procedure is similar to that of previous simulations of this type. For a detailed
description we refer the reader to Madnia and Givi (1992). The subject of the present DNS is a
three-dimensional periodic homogeneous box flow under the influence of a binary reaction of the type
described above. The initial species field is composed of out-of-phase square waves for the two
reactants F and 0. The computational package is based on the modification of a spectral-collocation
procedure using Fourier basis functions developed by Erlebacher et al. (1990a) (see also Erlebacher et
al., 1987, 1990b). The hydrodynamic field is assumed isotropic, and is initialized in a similar manner
to that of Erlebacher et al. (1990a) and Passot and Pouquet (1987). The turbulent field is of a
decaying nature in that there is no artificial forcing mechanism to feed energy to low wave numbers.
The code is capable of simulating flows with different levels of compressibility (Hussaini et al., 1990).
Here, only the results obtained for a low compressible case are discussed, since most previous analyses
of plug flow reactor< h.ve dealt primarily with incompressible flows (Toor, 1975; Hill, 1976; Brodkey,
1981; Leonard and Hill, 1988a,b, 1991). The resolution consists of 96 collocation points in each
direction. Therefore, at each time step 96 is the sample size for statistical analyses. With this
resolution, simulations with a Reynolds number (based on the Taylor microscale) of Re; ~ 41 are
attainable. The value of the molecular Schmidt number is set equal to unity.

3.1. Validations

The statistical behavior of the scalar field is depicted by examining the evolution of the PDFs of the
Shvab-Zeldovich variable #. These are shown in Figures 1 and 2 at times close to the initial (t1) and
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the final (12) states. These figures correspond, respectively, to the cases of an initially symmetric
(g =1) and nonsymmetric ({#) = 0.625) PDFs. At the initial time, the PDF is approximately
composed of two delta functions at # = 0, 1 indicative of the two initially segregated reactants, F and
O. At later times, the PDF evolves through an inverse-like diffusion in composition space. The heights
of the delta functions decrease, and the PDF is redistributed at other # values in the range [0, 1],
and subsequently becomes centralized around the mean value. Proceeding further in time results in a
sharper peak at this mean value, and in both cases the PDF can be approximated by a Gaussian
distribution near the mean scalar value. The trend for the symmetric case is the same as that
presented in earlier DNS studies (Eswaran and Pope, 1988; Givi and McMurtry, 1988). For the
nonsymmetric case there are no DNS data in the literature, but the present results verify that the
asymptotic PDF can still be approximated by a Gaussian distribution near its mean value.

The PDFs obtained by the mapping closure and those by an assumed beta density are also
presented in Figures 1 and 2. In these figures the model PDFs are parametrized with the same first
two moments obtained from DNS. In this parametrization only the normalized magnitude of the
variance of the models are forced equal to that of the DNS and no attempt was made to account
for the departure from the “exact” initial double delta distribution in DNS. With this matching,
nevertheless, the results clearly indicate that the model predictions compare very well with the DNS
results. Also, both models yield an asymptotic Gaussian-like PDF.

The temporal variation of the ensemble mean of the reactants’ concentration by the two models
are compared against those of DNS in Figures 3 and 4. These figures correspond to the two cases of

Figwre 4. Normalized mean concentration of fuet and the oxidizer for the nonsymmetric case. (a) S, = 0.4, (b) J,, = 0.2
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symmetric and nonsymmetric initial PDFys, respectively. In the symmetric case, under stoichiometric
conditions, the results arc simply obtained from the analytical expressions in (19) and (23). In the
nonsymmetric casc, numecrical integration of (14) and (15) and evaluation of the incomplete beta
function in (21) and (22) are necessary. In both cases the agreement of the models with the DNS data
is noteworthy. Also, a comparison between parts (a) and (b) of Figure 4 shows that as the magnitude
of #, decreases, the rate of consumption of the oxidizer increases.

The agreements noted above follow from the compatibility of the model PDFs and those of DNS,
at least for the case of binary mixing considered here. This finding is not new and has been well
documented in previous works, at least those considering an initially symmetric PDF (Pope, 1990,
1991; Madnia and Givi, 1992; Madnia er al., 1991a; Girimaji, 1991a). However, a nice feature of the
models is the explicit form of the final equations expressing these statistical quantities. Supported by
this quantitative agreement, it is proposed that, in the absence of a better alternative, the relations
obtained above be used as an explicit simple means for predicting the maximum rate of mean reactant
conversion in homogeneous reacting systems.

Despite the simplicity of these equations and their ease of application, it must be mentioned that
these equations predict the rate of mean decay of the reactants’ concentration far better than all
the previous turbulence closures based on the C/D models (see Givi, 1989). This is particularly
advantageous in that this evaluation can be made by a simple algebraic relation, whereas the C/D
implementations usually require more expensive numerical simulations (Kosaly and Givi, 1987;
McMurtry and Givi, 1989). Even for nonunity equivalence ratios, the numerical integration required
by the two models above is considerably less computationally demanding than those of the C/D
models. The only input in these models, similar to those in C/D closures, is the variance of the
Shvab-Zeldovich variable. This is provided here by means of DNS. In an actual implementation, this
variance can be obtained from experimental data or by means of an appropriate turbulence model
(Frankel et al., 1992a). The provision of such data is not very difficult since they can be obtained in
the setting of a nonreacting flow.

3.2. Applications

The relations obtained here can be used in determining the extent of validity of other conventional
closures for predicting the limiting rate of mean reactant conversion in turbulent flows. As an
example, here we consider the model based on the famous hypothesis of Toor (1962, 1975), which has
received considerable attention in practical modeling of unpremixed homogeneous reacting systems
(Bilger, 1980; Brodkey, 1981; Leonard and Hill, 1987, 1988a,b; Kosaly and Givi, 1987; Kosaly, 1987;
Givi and McMurtry, 1988; McMurtry and Givi, 1989; Givi, 1989). According to this hypothesis, in
an isothermal homogeneous reacting turbulent flow, the decay of the unmixedness, denoted by
¥ = (F'O’')(t)/{F'0’>{0), where the prime quantities indicate fluctuation from the ensemble mean
value, is independent of the magnitude of the Damkéhler number. This implies .hat the normalized
unmixedness parameter, defined by

¥ (1)l pa
7=l
¥ (1)pa=o

is the same under both reacting and nonreacting conditions, i.e., 2(t) = constant = 1 for all values of
Da. In previous DNS assessments of this hypothesis, it has been shown that for the case of initially
segregated reactants this model cannot be employed, and the normalized unmixedness ratio depends
on the nature of mixing and the magnitude of the Damkoher number (Givi and McMurtry, 1988;
McMurtry and Givi, 1989). In particular, it has been demonstrated that even for Da — oo, while the
normalized unmixedness is equal to unity at the initial time, its limiting lower bound depends on the
asymptotic frequency of the Shvab-Zeldovich variable. That is, Z(t =0) =1 > 2(t) > Z(t » ) = C,
where C is the lower limiting bound. For an asymptotic Gaussian distribution, it can be easily shown
that, for a mixture under stoichiometric conditions, the lower bound limits asymptotes to the constant
value C = 2/n (Kosaly, 1487; Givi and McMurtry, 1988).

This deviation from unity can be realized by the two models considered. With the mapping closure,
under symmetric stoichiometric conditions, from (2), (14), and (15), following the same integration
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procedure as before, it is shown that

(F'O){Da > x) - 2(arctan(1/4))?
(FO'>(Da=0) garctan(1/4./%% +2)

For the beta density rnodel, the corresponding form of the unmixedness ratio for 8, = B, is given by
_ 2y< I(g) )’
Zp="A=—) - 26
! n\I(g+1}) @0

In (25) and (26), the subscripts m and § are added tc denote the mapping and the beta density model.
It is easy to show that these equations satisfy the correct limiting conditions for a stoichiometric
mixture. This is for both the initial time, i.e., the inlet of the reactor,

2, = 25

Lim Z, = Lim 2,=1, @n
(-0 o~ 112}
and at large distances from it: 5
Lim Z,=Lim 2,=C==. (28)
[$-=] g~ =} n

The latter limiting condition cannot be realized in any of the previously used C/D models, or by
means of Toor’s models (McMurtry and Givi, 1989; Givi, 1989).

The results based on the applications of Toor's model become less accurate for nonstoichiometric
mixtures. For equivalence ratios other than unity, with the depletion of one of the reactants, the
unmixedness parameter approaches zero faster. This is demonstrated by the solution of the mapping
closure shown in Figure S for several values of the equivalence ratio (y). Note that as the magnitude
of this ratio increases above one, the unmixedness ratio goes to zero more rapidly. For an unity
equivalence ratio, the correct asymptotic value of 2/x is realized.

4. Extensions for Modeling of More Complex Reacting Turbulent Flows

Despite the pleasing features of our simple mathematical expressions, there are several restricting
assumptions which were necessarily imposed in deriving these equations. Here, we would like to
address the ramifications associated with these assumptions, and to provide the means of overcoming

them in future extensions of these models.

Firstly, due to the assumption of infinitely fast chemistry, only the maximum rate of the mean
reactant conversion is obtained. While this rate is very useful in describing unpremixed flames, from
both a theoretical standpoint and for practical applications (Givi, 1989; McMurtry and Givi, 1989;
Kosaly and Givi, 1987; Toor, 1962, 1975; O'Brien, 1971; Bilger, 1980; Williams, 1985; Dutta and
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Tarbell, 1989), thc model is not capable of describing some of the important features of the turbulent
flames, especially those associated with nonequilibrium effects. The extensions to finite rate chemistry,
reversible reactions, nonequilibrium flames, and multistep kinetics systems require numerical inte-
gration of the PDF transport equation. For these cases the problem cannot be mathematically
reduced to that of keeping track of a single scalar variable (like #). and requires the use of
mudtivariate statistical descriptions. For this, the implementation of mapping closure is relatively
straightforward since it provides a transport equation for the joint PDFs of the scalar variable in a
multivariable sense (Pope, 1991; Gao and O'Brien, 1991). However, it is not presently clear how to
devise an efficient computational procedure, typically based on Monte Carlo methods (Pope, 1981),
for the numerical treatment of these equations. Some work in this regard is currently under way
(Valifio and Gao, 1991; Valifio et al., 1991).

The extension of assumed distributions based on the beta density for treating multiscalars is more
straightforward but less trivial to justify. The most obvious means is to implement the multivariate
form of the Pearson distributions. The direct analogue of the beta density is the Dirichlet Irequency
(Johnson, 1987, Johnson and Kotz, 1972; Wilks, 1962; Narumi, 1923). For a mixture composed of
N + 1 species, the joint PDF of N concentrations (Y, ¥,,..., ¥y) is cdescribed in terms of an
N-variate density of the form

- FBy+B+- + Brii)
r(ﬁl)r(ﬂl)s'“» r(ﬂf\'ﬂ-l)

subject to the physical constraint

AW Yaaee i)

¢f|‘1¢gz—l ...w‘es—l“ _ 'IJI . 4’2 e !/,N)”“‘—l (29)

N+1

; vi= L (30)

The application of this density in modeling of multispecies reactions has been nicely discussed by
Gin.aaji (1991a). Due to the mathematical properties of the gamma function, this density is pleasing
from a mathematical viewpoint and most statistical cross correlations of the random variables
(Y1, ¥,,...) var be conveniently obtained by means of simple analytical relations (Frankel, 1992).
Some poinis in this regard have been made by Girimaji (1991b). However, the use of the Dirichlet
frequency cannot be justified for modeling of unpremixed reacting flow in a general sense (Frankel,
1992). In fact, there is no way of implementing this density directly for modeling of nonequilibrium
flames, involving strong temperature variations. This is simply due to the additivity constraints of this
density requiring the unity sum of the normalized random variables (30).

Secondly, the mathematical derivations presented here are only valid for initially segregated
reactants. In both models the complete segregation facilitates significant simplifications of the final
equations. This assumption is compatible with that made in the majority of previous works on
unpremixed reacting flows (Toor, 1975; Brodkey, 1981; Bilger, 1980). For other initial conditions,
e.g., partial premixing of the reactants, or non-delta-like distributions, numerical integration of
the PDF transport equation is required. Again, an appropriately devised numerical procedure can
accommodate such conditions. However, the use of a beta density (or any other assumed distribu-
tions) cannot be justified for other complex initial conditions.

Thirdly, the final mathematical expressions are only valid in the setting of a homogeneous flow.
Extension to inhomogeneous flow predictions is also straightforward, but requires numerical inte-
gration of the modeled equations. Both models can be directly implemented into appropriately
devised numerical procedures. The mapping closure can be invoked in the mixing step of a fractional
stepping procedure, similar to that of typical Monte Carlo procedures (Pope, 1981). The beta density
requires modeled transport equations for the low-order statistics of the reacting field. These equations
include the required information pertaining to the spatial inhomogeneity of the flow through the
parameters f,, B, .... With this information, all the higher-order statistics of the reacting field can be
provided by simple analytical means (Girimaji, 1991b; Frankel et al., 1992b).

Finally, in the context of the single-point PDF formulation presented, there is no information
pertaining to the evolution of the relevant turbulent length scales. The final expressions can only be
presented in terms of other physical parameters (here, through the variance of the Shvab-Zeldovich
variable). In the context considered, this parameter has been provided by the DNS data. In a practical
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application, this must be provided by external means (turbulence models, experimental data, etc.).
Jiang ¢t al. (1992) and Frankel et al. (1992a) provide further discussions related to this issue.

S. Concluding Remarks

It is demonstrated that the mapping closure of Kraichnan (Chen et al., 1989; Pope, 1991) yields
closed-form analytical expressions for predicting the limiting bound of the mean reactant conversion
rate in simple chemistry of the type F + rO — (1 + r) Product in homogeneous, isothermal turbulent
flows. It is also shown that, for the case of complete initial segregation, the scalar PDFs generated by
this closure can be well approximated by a beta density. This density also provides closed-form
analytical expressions for the limiting rate of mean reactant conversion. A nice feature of the
mathematical results generated by the two models is their capability of revealing the influence of the
stoichiometric coefficient and the equivalence ratio. In both cases the mathematical expressions
simplify significantly for a stoichiometric mixture. The prediction results via both models compare
favorably with data generated by DNS. This agreement follows from the compatibility of the models’
PDFs with those of DNS. The simple final results generated here are superior to those of previous
closures based on typical C/D models, and those based on Toor's hypothesis.

These closed-form relations are furnished with the imposition of several restrictive assumptions.
The ramifications associated with these assumptions are discussed, and some suggestions for future
extensions are provided. Despite these assumptions, it is very encouraging to have physically plausible
algebraic relations for the direct estimate of the mean reactant conversion rate in homogeneous
turbulent flows, typical of those in plug flow reactors.
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Abstract—A family of Probability Density Functions (PDF's) generated by Johnson-Edgeworth Translation
(JET) is used for statistical modeling of the mixing of an initially binary scalar in isotropic turbulence.
The frequencies obtained by this translation are shown to satisfy some of the characteristics of the PDF’s
generated by the Amplitude Mapping Closure (AMC) (Kraichnan, 1989; Chen er al, 1989). In fact, the
solution obtained by one of the members of this family is shown to be identical to that developed by the AMC
(Pope, 1991). Due to this similarity and due to the demonstrated capabilities of the AMC, a justification is
provided for the use of other members of JET frequencies for the modeling of the binary mixing problem.
This similarity also furnishes the reasoning for the applicability of the Pearson Family (PF) of frequencies
for modeling of the same phenomena. The mathematical requirements associated with the applications of
JET in the modeling of the binary mixing problem are provided, and all the results are compared with
data generated by Direct Numerical Simulations (DNS). These comparisons indicate that the Logit-Normal
frequency portrays some subtle features of the mixing problem better than the other closures. However, none
of the models considered (JET, AMC, and PF) are capable of predicting the evolution of the conditional
expected dissipation and/or the conditional expected diffusion of the scalar field in accordance with DNS. It
is demonstrated that this is due to the incapability of the models to account for the variations of the scalar
bounds as the mixing proceeds. A remedy is suggested for overcoming this problem which can be useful in
probability modeling of turbulent mixing, especially when accompanied by chemical reactions. While in the
context of a single-point description the evolution of the scalar bounds cannot be predicted, the qualitative
analytical-computational results portray a physically plausible behavior.

1 INTRODUCTION

The problem of binary mixing in turbulent flows has been the subject of widespread
investigations over the past two decades (Dopazo, 1973; Pope, 1979; Pope, 1985; Pope,
1990; Givi, 1989; Kollmann, 1990). This problem has been particularly useful in assessing
the extent of validity of the closures developed within this period for modeling of turbulent
mixing by Probability Density Function (PDF) methods (Dopazo, 1973; Pope, 1976; Pope,
1979; Janicka et al, 1979; Pope, 1982; Kosaly and Givi, 1987; Norris and Pope, 1991).
Usually the problem is considered in the setting of a spatially homogeneous turbulent flow
in which the temporal evolution of the PDF is considered. In this setting, development
of a closure which can accurately predict the evolution of the PDF has been the main
objective of these investigations (for recent reviews see Pope (1990); Kolimann (1990);
Givi (1989)).

Computational experiments based on Direct Numerical Simulations (DNS) have proven
very useful in evaluating the performance of new closures (Givi, 1989; Pope, 1990). The
binary mixing problem is well-suited for DNS investigation, and current computational
capabilities allow consideration of flows at sufficiently large Reynolds numbers in which
the behavior of the models can be assessed (Eswaran and Pope, 1988; Givi and McMurtry,
1988; McMurtry and Givi, 1989; Madnia and Givi, 1992). The results of all the previous
work on DNS of the binary mixing problem portray a clear picture of the PDF evolution,
at least at the single-point level. A successful closure is one which can predict all the
stages of mixing, as depicted by DNS, from an initially binary state (total segregated) to
a final mixed condition.
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Amongst the models developed in the literature, the recent Amplitude Mapping Closure
(AMC) (Kraichnan, 1989; Chen et al.. 1989; Pope, 1991) has proven effective in producing
a physically correct PDF evolution. In the application of this model to the problem of
binary mixing it has been demonstrated that the closure is capable of approximating a
reasonably correct evolution at all stages of mixing (Pope, 1991). Namely, the evolution
from an initial double delta PDF to an asymptotic Gaussian distribution. This is a trend
which has been observed in DNS (Eswaran and Pope, 1988; Givi and McMurtry, 1988;
McMurtry and Givi, 1989; Madnia and Givi, 1992) and also corroborated by experimental
investigations (Miyawaki et al., 1974). However, it is shown by Gao (1991); O’Brien and
Jiang (1991) that the PDF adopts an asymptotic Gaussian-like distribution only near the
mean scalar value, and the conditional expected dissipation does not correspond to that
of a Gaussian field everywhere within the composition domain.

Our first objective in this work is to present another means by which the AMC can
be viewed. It is demonstrated that in the binary mixing problem, this closure can be
considered as a member of the family of frequencies generated by the method of Johnson-
Edgeworth Translation (JET). In fact, it is shown that the result produced by the AMC is
identical to that generated by one of the members of this translation. With this observation,
a justification for employing other simpler “assumed” frequencies is provided. Our second
objective is to make a detailed examination of the conditional expected dissipation and
the conditional expected diffusion of the scalar variable as predicted by the closures.
This examination provides an effective means of demonstrating the deficiencies of these
models in reproducing the correct physical behavior as depicted by DNS results. With
the development of analytical relations for some of these closures, a remedy is suggested
for overcoming the model deficiencies.

1.1  Outline

In the next section, the problem of binary mixing and its solution via the AMC is briefly
reviewed. In Section 3, the Johnson-Edgeworth Translation is introduced with a highlight
on the mathematical constraints associated with its application for the modeling of the
mixing problem. Due to the previously established similarity of the JET frequencies
with those based on the Pearson Family (PF), the Beta density of the first kind is
also presented in this section. The PDF’s generated by these three models (AMC,
JET and PF) are compared against each other and also with data generated by Direct
Numerical Simulations (DNS) in Section 4. The results for the conditional expected
scalar dissipation, and the conditional expected scalar diffusion for all the closures are
discussed, respectively, in Section 5 and in Section 6. In Section 7, some theoretical
remarks pertaining to the evolution of the scalar in an isotropic field are presented. With
this presentation, the problems associated with all three closures become more clear.
In Sections 2-7, the discussions are limited to those associated with the transport of a
passive scalar from an initially symmetric binary state in isotopic turbulence. Therefore,
in Section 8 some discussions are presented of the applications of the models for treating
more general problems. This paper is drawn to a conclusion in Section 9.

2 BINARY MIXING PROBLEM

We consider the mixing of a scalar variable ¢ = ¢(x,¢) (x is the position vector, and ¢
denotes time) from an initially symmetric binary state within the bounds ¢¢ < ¢ < ¢,.. In
this section, we assume that the lower and the upper bounds of the scalar range remain
fixed (i.e. ¢., ¢, are constant). Within this domain, the single-point PDF of the variable
¢ at initial time is given by

Pi(6,1 = 0) = 3[6(6 ~ #0) +8(6 = 4u)) (1)

|
. |
.
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FIGURE la The comparison of the PDF's as predicted by the models with DNS data. (a) o> = 0.173.

which obviously infers the following relations for the mean and the variance

1
<¢>=(u+#)/2, <’ >=0%= 2% - ée)’. (2

Here, <> indicates the probability mean, o? denotes the variance, and the prime
represents the instantaneous deviation from the mean. In isotropic incompressible
turbulence, the evolution of the PDF is governed by the transport equation

3P| 32(6P|)_
5t =% HSesd €)

where ¢ represents the expected value of the scalar dissipation with diffusion coefficient
T, &(= I'V¢ - V¢), conditioned on the value of the scalar ¢(x, ),

e =¢(o,t) =< £|d(x,2) > . C))
Equation (3) can alternatively be expressed by
8P, O(DPy) | ’
= < < Uy
ot "5 0, ¢<p<¢ (5)

where D denotes the conditional expected value of the scalar diffusion

D = D(¢,t) =<TV?¢|p(x,1) > . (6)
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FIGURE 1b The comparison of the PDF’s as predicted by the models with DNS data. (b) o? = 0.079.

The closure problem in determining the PDF, P, is associated with the unknown

conditional expected dissipation, €, and/or the conditional expected diffusion, D. These
two are related through Egs. (1)-(6),

1 8(5P.)

POD= R o - 0

At the single-point level neither the conditional mean dissipation nor the conditional mean
diffusion are known (neither are their unconditional mean values). Their specifications
require external information.

With the application of the AMC, this external information is obtained in an implicit
manner. As explained in detail by Pope (1991), the AMC involves a mapping of the
random field of interest ¢ to a stationary Gaussian reference field ¢y, via a transformation
¢ = x(¢0, t). Once this relation is established, the PDF of the random variable ¢, P,(¢),
is related to that of a Gaussian distribution. In a domain with fixed upper and lower
bounds, i.e. fixed ¢, ¢., the corresponding form of the mapping function is obtained by
Pope (1991). The solution for a symmetric field with zero mean, < ¢ >=0,¢, = —¢,,
is represenied in terms of an unknown time 7

x(¢0,7) = ¢y erf (-&) ,G(1) = Vexp(2r) — 1. (8)
vV2G
With this transformation, the PDF is determined from the physical requirement
Py(x($0,7), 7)d x = P(do)d ¢o, ®
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FIGURE Ic The comparison of the PDF’s as predicted by the models with DNS data. (c) o? = 0.00247.

where P; denotes the PDF of a standardized Gaussian distribution, ie. Pg(¢o) =
7‘5: exp(—¢2/2). A combination of Eq. (8) and Eq. (9) yields

2
Py(¢,7) = 23.. exp {—(G2 -1 [erf"(d%)] } - (10)

In these equations, the relation between 7 and the physical time ¢ is unknown in
the context of a single-point description. This relation can be obtained only through
knowledge of the higher order statistical properties of the scalar field. For example, it
is shown by Madnia et al. (1992); Frankel et al. (1992a) that the mapping closure yields
the algebraic relation for the normalized variance,

<02>('r)__2

——————= = —arctan (——1—) (11)
<a?>0) =« GVGZ+2)’

in which the variance is related to the unknown mean dissipation €(¢) by integrating Eq.

3,

d
oo = —elt), (12)
where,
Pu du
«(t) = / P\(6,)e(, 1) = — / oP1(6,)D($,1)d . (13)
& ér
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3 JOHNSON-EDGEWORTH TRANSLATION

The AMC captures some of the basic features of the binary mixing problem as described
by Pope (1991). Namely, the inverse diffusion of the PDF in the composition domain
from a double delta distribution to an asymptotic Gaussian distribution centered around
< ¢ >, as a® — 0 (or G — 0o). This asymptotic Gaussian distribution near the mean
scalar value cannot be realized in any of the previous mixing models based on the so
called Coalescence/Dispersion (C/D) closures (Curl, 1963; Janicka ef al., 1979; Pope,
1982; Kosaly and Givi, 1987). And those modified C/D models which do yield such an
asymptotic state, e.g. Pope (1982), do not predict the initial stages of mixing correctly
(Kosaly, 1986). This deficiency of the C/D models in yielding asymptotic Gaussianity has
been a motivating factor for recent investigations resulting in the development of the
AMC (Pope, 1991).

In the spirit of “mapping” to a specified reference field, it is speculated that there are
perhaps other means of “driving” the PDF toward Gaussianity in a physically acceptable
manner. In fact, this subject has been of major interest to statisticians and biometricians
within the last century since the early work of Edgeworth (1907). The scheme was
referred to by Edgeworth as the Method of Translation, and was later detailed by
Johnson (1949a). In today’s literature of statistics and biometrics, the scheme is known
as Johnson-Edgeworth frequency generation, and has many applications in statistical
analysis.

The essential element of Johnson-Edgeworth Translation (JET) is similar to that of
the AMC. Namely, it involves the transformation of the random physical field, here, ¢,
to a fixed standard Gaussian reference field by means of a translation (or mapping) of

the form 5
=z |=1,
¢ [7(1)]

Y(t =0) =0 < y(t) < ¥(t — 00) — oo. (14)

In this equation, the function 4(¢) plays a role similar to that of G in the AMC. With
an appropriate form for the function Z, the scalar PDF is determined from Eq. (9).
For application in the problem of mixing from an initially symmetric binary state of zero
mean within a fixed domain ¢, = —¢, < ¢ < ¢,, the appropriate JET must satisfy the
following physical constraints:

()Limg-0Z(2) = H(4)

(ii)Lim(~,_.°°)Z(%2) =~ Coo + O(43) + ...

(iii) Z (%) is an odd function with respect to the scalar mean for any value of o?.

(iv) Z (%) is bounded and is a non-decreasing function of ¢¢, and —¢, < Z < ¢, at
all times.

(15)

In these relations, H denotes the Heaviside function, and C is constant. Constraint (i)
implies an initially symmetric and segregated binary state. The second constraint ensures
an asymptotic Gaussian distribution for P;(¢) near the mean scalar value. Condition (iii)
preserves the symmetry of the PDF around the mean value at all times, and constraint
(iv) implies the boundedness of the scalar field, ie. —¢, < ¢ < é,. A function Z
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which satisfics all the above constraints, is therefore expected to provide an acceptable
means of approximating the PDF. An example is the Logit-Normal (or tanh~!-Normal)
distribution, as originally proposed by Johnson (1949a). For the symmetric problem
within a fixed domain, this distribution is produced by a mapping of the form!

Z = ¢, tanh (%) . (16)

With this mapping, together with Eq. (9), the PDF of the scalar adopts the form,

v ’72 1, ¢ 2
Pi(¢.t) = —— |tanh~ (= . 17
\(@.0) \/ﬂ(l—(j;)z)exp{ - [t (%)]} a7)

It is easily verified that this frequency satisfies the physical constraints of the symmetric
binary mixing problem (Eq. (15)). At ¢ = 0, the PDF is approximately composed of two
delta functions at ¢ = +¢,, and as ¢t — oo the PDF adopts an approximate Gaussian-
like distribution centered around the zero mean. These features are similar to those
portrayed by the PDF generated by the AMC (Eq. (10)).

This example demonstrates that with the satisfaction of the above indicated constraints,
several other frequencies can be generated for effective modeling of the binary mixing
problem. In fact, it is easy to show that the solution generated by the AMC can also be
viewed as a member of the JET family. This is demonstrated by considering a translation

of the form
Z = g, orf (?2) , (18)
Y
From Eq. (9), this translation yields the PDF
2 2
Y Y 19

Pi(o,t) = —(= —1) {erf — . 19
1(9,1) 2ﬁd,“exp{ (5 )[e (¢)]} (19)

This frequency can be termed the erf~!-Normal distribution and is identical to the form
presented by Eq. (10). The difference is due to the terms containing G and . But this is
unimportant since in the context of single-point statistics neither of the two parameters
can be determined by the PDF. Therefore, with G = &2-, both expressions are equivalent.

With this equivalence, the closed form relation for the variance of the erf™ 1.Normal
distribution has the same algebraic form given by Eq. (11). It is easy to show that many
other distributions can be generated to display similar characteristics. In the discussions
to follow, we only consider the Logit-Normal and the erf~1-Normal distributions, the
latter being identical to the distribution generated by AMC.

Pearson Family,

The similarity of the AMC and JET in generating equivalent PDF’s is also useful in
explaining the applicability of the frequencies generated by the Pearson family (Pearson,
1895). For a “bimodal” distribution, a physically acceptable frequency is the Pearson

' Inrecent literature, the Logit-Normal is usually expressed by the mapping Z = ¢, {2[1 + exp(ég /’y)]“l -1 }
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FIGURE 2 Temporal evolution of the Logit-Normal PDF.

Type I, known as the general form of the “Beta density of the first kind”. This density
is typically expressed in a fixed domain within the range 0 < ¢ <1,

el gl 0<g<
PiO) = giapy? A9 Th0<e< (20)
Here B denotes the Beta function, and the parameters 5; and 3, are determined from
the knowledge of the mean and the variance of the random variable. In a symmetric
field within [0,1], < ¢ >= %, B1 = B, = B, and thus the PDF is characterized by the
variance alone.

The similarity of the Pearson distributions and the JET frequencies is well recognized
in the statistics literature (see Johnson (1949a)). Therefore, with the equivalence of the
AMC and the JET as demonstrated above, it is not surprising that the Beta density
and the AMC are also similar. This similarity, without a mathematical proof, has been
recognized in previous works (Madnia et al., 1991; Madnia and Givi, 1992).

4 COMPARATIVE ASSESSMENTS

The probability distributions obtained from the three frequency generation methods
described above are all capable of providing a reasonable stochastic approximation of

|
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FIGURE 3a Temporal evolution of the centralized moments of the scalar variable as predicted by the
models and the comparison with DNS data. (a) p4 vs. t*.

the mixing problem from an initially binary state. Namely, an approximate double delta
distribution at ¢ = 0, and an approximate Gaussian-like distribution as ¢ — oo. The
former can be realized in the limit of unity normalized variance o2(t)/o%*(0) = 1. In a
fixed composition domain, this corresponds to G = 0 for AMC (v = 0 in JET), and
to 8 = 0 for the Beta density. The latter is realized in the limit G,~,8 — oo. The
limiting Gaussian distribution for the AMC has been asserted by Pope (1991). For the
JET, the criterion (ii) in Eq. (1S5) guarantees this condition. For the Beta density, the
assertion of an asymptotic Gaussian distribution in the limit of zero variance is established
in elementary texts on statistics (e.g. Casella and Berger (1990)). At the intermediate
stages, however, the PDF’s are not identical. It is easily verified by Eqs. (10), (20) that
the AMC and the Beta distributions become constant (P;(¢) = constant = 1¢,) for
G = 8 = 1. However, the Logit-Normal PDF does not yield a uniform distribution at
any stage of its evolution. Also, as indicated by Johnson (1949a) it is not possible to
provide a closed form algebraic expression similar to Eq. (11) for the variance of the
Logit-Normal distribution.

In order to make comparative assessments of the models, the frequencies generated
by the three methods (AMC, JET, and PF) are compared with each other, and also with
PDF’s generated by Direct Numerical Simulations (DNS). The DNS procedure is similar
to that of previous simulations of this type. Since these simulations are not the major
focus of this paper, only a brief outline of the procedure is described; for a detailed
discussion we refer the reader to Madnia and Givi (1992). The subject of the DNS is
a three-dimensional periodic homogeneous box flow carrying a passive scalar variable.
The initial scalar field is composed of square waves with maximum and minimum values
of 1 and 0, respectively. These limiting values are arbitrary, and can be translated to
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FIGURE 3b Temporal evolution of the centralized moments of the scalar variable as predicted by the
models and the comparison with DNS data. (b) pg vs. t*.

appropriate ¢, ¢, for comparison to each of the models. At time zero, in most regions
of the flow, the scalar adopts these limiting values (with equal probability), and the
spatial regions between the initial maxima and minima are smoothed by a polynomial fit.
The degree of this smoothing is minimized, but limited by the computational resolution,
to ensure an approximate initial double delta distribution. The computational scheme
is based on a spectral-collocation procedure using Fourier basis functions developed
by Erlebacher et al. (1990a); Erlebacher et al. (1987); Erlebacher et al. (1990b). The
hydrodynamic field is assumed isotropic and is initialized in a similar manner to that by
Erlebacher et al. (1990a); Passot and Pouquet (1987). The code is capable of simulating
flows with different levels of compressibility (Hussaini et al., 1990). Here, only the
results obtained for a low compressible case are discussed. The resolution consists of
96 collocation points in each direction. Therefore, at each time step 96° is the sample
size for statistical analysis. With this resolution, simulations with a Reynolds number
(based on the Taylor microscale) of Re, = 41 are attainable. The value of the molecular
Schmidt number is set equal to unity.

As indicated in Section 1, in order to compare the model predictions with DNS results
a matching is required of the higher order statistics of the field as generated by each
method. Here, this matching is done through the variance of the conserved scalar. These

results are presented in Fig. 1. This figure indicates that at initial times, g{-(% ~ 1, all
the PDF’s are approximately composed of two delta functions at ¢ = 0,1 indicating the
initial binary state. At longer times, the PDF’s evolve through an inverse-like diffusion
in the composition space. The heights of the delta functions decrease and the PDF’s

are redistributed at other ¢ values within the range [0,1]. At very long times, the PDF’s

al W . hy ‘
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FIGURE 4a Comparisons of the normalized conditional dissipation as predicted by the three models with
the DNS data. (a) o2 = 0.079.

become asymptotically concentrated around the mean value in a manner that can be
approximated by a Gaussian distribution.

An interesting feature captured in Fig. 1(b), is the capability of the Logit-Normal
distribution in depicting a subtle behavior in the frequency distribution. This feature is
the double “hump” characteristic of the DNS data at intermediate times and cannot be
realized by the AMC or the PF generated frequencies. All the previous DNS results
including those of Eswaran and Pope (1988); Givi and McMurtry (1988); Pope (1991)
portray this feature. The PDF’s generated by the AMC, and the Beta distributions
adopt a constant value (of 1/2) when o2 = 12 (for 0 < ¢ < 1). This corresponds to

G=1y= V2 2,4 = 1. This uniform distribution is not exactly realized in any previous
or present DNS results. Therefore, it can be speculated that in the absence of a better
alternative, the Logit-Normal distribution may provide the simplest means of providing an
assumed distribution for the statistical modeling of the symmetric binary mixing problem.
The complete evolution of the Logit-Normal PDF is shown in Fig. 2.

Further quantification of the agreements noted above are made by comparing the higher
moments of the scalar field. This comparison is made in Fig. 3. In this figure, results are
presented for the temporal variations of the kurtosis (u4) and the superskewness (u¢)
of the scalar variable ¢. For the Beta density, the higher order moments are obtained
analytically based on the knowledge of the variance. For the AMC, the analytical-
numerical results by Jiang et al. (1992) are used, while for the Logit-Normal PDF the
moments are calculated strictly by numerical means. This figure shows that initially, all
these moments are close to unity, and monotonically increase as mixing proceeds. For all
the models, the magnitude of the moments asymptotically approach the limiting values
of 3 and 15, respectively, corresponding to those of a Gaussian distribution. The DNS
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FIGURE 4 Comparisons of the normalized conditional dissipation as predicted by the three models with
the DNS data. (b) o2 = 0.013.

results are in good agreement with the model predictions at all times. However, due to
obvious numerical difficulties, the simulations could not be continued until the variance
approaches zero identically.

5 SCALAR DISSIPATION

The results presented above indicate a good agreement between the model predicted
single-point statistics (PDF’s and high-order moments) and the DNS data at all the
stages of mixing. These results also suggest an approximate asymptotic Gaussian state
for all the closure PDF’s and those of the DNS. Here, it will be demonstrated that the
agreement between the DNS and the model predictions is very good at the initial and
the intermediate stages of mixing. However, the agreement worsens at the final stages.
Also it will be shown that none of the closures yield “exact” Gaussian distributions at the
final stages of mixing. In doing so, it is useful to note that a Gaussian PDF is defined,
and is only valid, for an unbounded domain. The frequencies generated here, are all
defined within a fixed and finite domain. For AMC, it has been established (Gao, 1991;
O’Brien and Jiang, 1991) that the finite boundary size at the initial time “maintains”
its influence at all the subsequent stages of mixing. In other words, the PDF adopts a
Gaussian distribution in the limit of zero variance only near the mean value of the scalar.
In order to show the departure from Gaussianity at scalar values away from the mean,
the conditional expected dissipation of the scalar field is considered.

Given the PDF, as is the case here, Eq. (3) can be used to determine the expected
conditional dissipation. It has been shown by Girimaji (1992) (and will be discussed in
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FIGURE S5a Temporal evolution of the conditional expected diffusion normalized with the total dissipation.
(a) erf~!-Normal.

detail in Section 7) that for a valid PDF within a defined range, —¢, < ¢ < ¢, the
expected conditional scalar dissipation is given by

1 3
€GN =—p o (/: F(¢,:)d¢), (21)

where F denotes the cumulative distribution function (CDF)

é
F(o,1) = /_ | Pih0as. @)

With Eq. (21), the expected conditional dissipation can be evaluated for a given PDF. For
2

example, for a Gaussian distribution of zero mean, Pg(¢,0?) = Vi‘:;exp(— 1), ~—00 =

—¢u < ¢ < ¢, = 00, with a non-stationary variance, o2 = o%(t), it is easily shown that,

1 (¢ ¢ ¢ o ¢
= |———| = ([ + zef(—) + —exp(— =) | ,—00 < ¢ <
0= || o (B + Bt o)+ S em(- ) —o <4< -
23
Noting that ¢ is an independent variable (of ¢), and evaluating the derivatives on the
RHS of Eq. (23) yields, after some simple manipulations,

do
e(¢,t) = constant = —g—

=, 24)
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FIGURE sb  Temporal evolution of the conditional expected diffusion normalized with the total dissipation.
(b) LMSE.

with the implications (derived from Eqs. (12)-(13)),
e(¢,t)

———= = constant = 1, (25)

€(t)

at all times for all ¢ values in the range —oo to +oc. Equations (24-25) indicate the
independence of the conditional scalar dissipation and the composition domain for a
Gaussian field. These results have also been obtained by Gao (1991); O’Brien and Jiang
(1991) by following a different mathematical procedure.

The conditional expected dissipation predicted by the models can be obtained by
following a similar course. For the AMC and the PF distribution, the conditional
dissipation fields have been obtained by Gao (1991); O’Brien and Jiang (1991) and by
Girimaji (1992), respectively. For the purpose of the discussions to follow, these results
are presented here in a different form for all three closures. For the erf~!-Normal
distribution, the instantaneous CDF is given by

F(é,1) = % (1 +erf [%erf"(%)]) . (26)

Therefore, with Eq. (21), the conditional dissipation can be expressed in terms of the
corresponding PDF,

3 1 9 f1[* Y e, b 1 }
€(¢,‘)——m5;{§/-¢“el‘f[-ﬁeff (a)]d¢+§(¢+¢u) . (27)

+ N I _
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Again, with an independence of ¢ and ¢ this equation reduces to,

1 OH
e(o,t) = _P|(¢,t)(‘)_t’ (28)
where,
erff~I(2)
= % ) * eﬁ(—\}y_iz)exp(—zz)dz. (29)

For a PDF within a fixed domain, the integration procedure becomes simplified by
evaluating the time derivatives inside the integral. In this way, the results can be expressed
analytically. After some manipulations,

dH —V2¢,%2 21 2
i = @ _f7g) exp{—(l + 22—) [erf '(ﬁ)] }, (30)
and, therefore
_ R NE
e(e,t) = m exp {—2 [erf (E)] . (31)

From this equation, the total dissipation is obtained by direct integration of the conditional
mean dissipation field. The results, after significant algebraic manipulations yield

4922

- Mg

€(t) = PRI e , (32)

(o, t) - 1+sin [%] exp {—-2 [erf_l(i)]z} . (33)
e(t) 1 —sin [%] Ou

In the form presented above, Egs. (31)-(33) portray several insightful features of the
solution. First, Eq. (33) indicates that the conditional dissipation is always dependent
on the magnitude of the scalar, and it maintains the same self-similar functional form of

2
dependence exp{—z [erf—l(d%)] } This has been previously indicated by Gao (1991);

O’Brien and Jiang (1991). Here, the amplitude (¢ = 0, 1) can be conveniently expressed
in terms of the variance decay, which is very useful for further manipulations. Second,
it is interesting to note the similarity of Egs. (31) and (33) with the results obtained for
the instantaneous dissipation of Fickian mixing of a conserved scalar in laminar non-
homogeneous flo v ; (such as the typical shear flows (Spalding, 1961; Linan, 1974; Peters,
1984)). This similarity further asserts the “permanent” influence of the boundaries
since in non-homogeneous mixing, the scalar bounds are “fixed” due to the physical
constraints. Finally, Eq. (32) suggests an infinitely large dissipation at time zero, i.e.
when o(1)/%(0) = 1, and the asymptotic behavior

. 13
Limgy2 )22 fgug = 1. (34)
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FIGURE 6a Comparisons of the normalized conditional diffusion as predicted by the three models and
the LMSE closure, with the DNS data. (a) o? = 0.079.

This limiting behavior near zero indicates the Gaussianity of the PDF only at the mean
value of the scalar.

Following a similar procedure, the conditional expected dissipation can be obtained
for the other closures. For the Beta density in the range 0 < ¢ < 1, the final results can

be expressed as
1 i)
e(d,t) = Pt (/o’h(ﬂ,ﬂ)dd’) , (35)

where, I denotes the Incomplete Beta Function (Abramowitz and Stegun, 1972). For
the Logit-Normal distribution, the corresponding form is

___1 a[n a1+ E
(o, t) = Pio.)Or {Z[hert’ [‘/iln\l_%)]dd’}. (36)

Neither of the equations (35-36) can be simplified further. Therefore, in order to evaluate
the conditional expected dissipation (and the total dissipation), these equations must be
evaluated numerically.

In Fig. 4, the evolution of the conditional expected dissipation (normalized by the
total dissipation) is presented for the models and the DNS data. This figure shows the
similarity of the conditional expected dissipation for all of the models. The bell shape
distribution is evident in all the figures with a maximum amplitude near the mean value.
Also, as the variance decreases and the PDF becomes concentrated near the mean, the

‘------\.-----
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FIGURE 6b Comparisons of the normalized conditional diffusion as predicted by the three models and
the LMSE closure, with the DNS data. (b) o2 = 0.013.

amplitude tends to unity. This shape is typical of that observed in previous DNS results
of Eswaran and Pope (1988); Nomura and Elgobashi (1992).

The results in Fig. 4 show the ¢ dependency of the results at all the stages of mixing.
That is, the PDF asymptotically adopts an apparent Gaussian-like distribution only near
the mean value of the scalar, and the conditional dissipation does not become independent
of the scalar everywhere. For the AMC, this has been discussed by Gao (1991); O’Brien
and Jiang (1991). Considering the similarity of the three models, it is therefore concluded
that all three models yield the same characteristics. These results also suggest a poor
agreement between the model predicted conditional expected dissipations and the DNS
data. Note that at the initial stages of mixing, the predicted results compare well with
DNS data. However, with mixing progression, at smaller variance values, the agreement
is only good near the mean scalar value and worsens near the bounds of the composition
domain. This, as described above, is due to the permanent influence of the scalar
boundaries at all the stages of mixing.

6 SCALAR DIFFUSION

Albeit directly related to the conditional expected dissipation (Eq. 7), it is useful to
examine the behavior of the conditional expected diffusion in light of the discussions
above. Given the PDF, again within the fixed range —¢, < ¢ < ¢,, the conditional
expected diffusion can be determined from

1 OF

D(¢,t) = WO

(37
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This equation is very uscful in illustrating the p::,; erties of the PDF. For example, for a
Gaussian distribution within an infinite domain

OF ¢ do? ¢
o = Vet dt P27 %)
and consequently

e(t)  o2(1)
It is noted that Eq. (39) is in accord with the Linear Mean Square Estimation (LMSE)
closure (O’Brien, 1980).
The mean conditional diffusion can be determined for the three models considered.
For the erf~!'-Normal PDF with zero mean

oF _ _l_i'_’exp{_%z [erf“l(i)].}erf—l(g) (40)

Again with explicit equations for the total dissipation and the variance, it is possible to
obtain an algebraic expression for the conditional expected diffusion. The results after
substantial algebraic manipulations yield

. | xa?(e)
by _ [ _-vr | 1+an[5G) exp { - [erf“(—"i)]z} ert=Y(2). (4)
e(r) sin [—q-(-—’z':(,,; ] 1 —sin [__,L_Z’z':(('»] P O

In this form Eq. (41) is very pleasing since it does reveal the (t,¢) separability, and thus
the self-similarity, of the diffusion field. The terms inside the parenthesis on the RHS are
time dependent, whereas the remaining terms depend explicitly on ¢ only. As indicated
by O’Brien and Jiang (1991), this separability cannot be easily deduced from Eq. (5),
but is possible with the analytical procedure followed above. The temporal evolution of
the conditional expected diffusion for the erf—!-Normal distribution, and its comparison
with that of the LMSE closure is presented in Fig. 5.

By following the procedure above, analogous expressions are obtained for the other
two closures. Namely,

2
D(¢.t) _ 2¢u d [1 _ (i) ]tanh-'(;}), (42)

() v do? Su
for the Logit-Normal distribution of zero mean, and

D(¢,t) 2 0l4B,B)
e(t) ~ Py(¢,t) do?

(43)

for the symmetric Beta density within [0,1]. Equations (42)-(43) cannot be simplified
further due to the lack of an explicit analytical relation for the variance of the Logit-
Normal distribution (Johnson, 1949a), and the unknown analytical form of the derivatives
of the Incomplete Beta Function.
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FIGURE 7 The temporal variations of ¢max and ¢, generated by DNS.

In Fig. 6, results are presented of the conditional expected diffusion as predicted by the
three models, and also that of the LMSE closure. In these figures, the DNS data are also
provided at several variance values. The similarity of the modelled results are once again
revealed in these figures, which is expected in view of the PDF similarities. At all times,
the conditional diffusion field has an odd distribution near the mean scalar value. On
the right half of the composition domain, all three closures yield a monotonic decrease
of D to an instantaneous minimum, and then a monotonic increase to zero at the upper
bound of the scalar. The location and the magnitude of the instantaneous maxima and
minima is not the same for the three closures. Also, as Eqgs. (41)-(43) indicate, the
zeroes of D can only be realized at ¢ = 0, £¢,. At the initial times, i.e. large variances,
all three closures agree reasonably well with the DNS data. This agreement is better
for the three models than for the LMSE closure. However, as the variance becomes
smaller, the agreement between the model predictions and the DNS data worsens. It
is noted that as the variance becomes small, all the closures yield a Gaussian-like PDF
near the mean value of the scalar. This is shown in the figures near ¢ =< ¢ > (= %
for DNS), where the predicted results are in accord with the LMSE closure, ie. 'inear
profiles of similar slopes. In this region, the results are also in accord with DNS da: - for
all the closures including the LMSE. However, again, the predicted results devia.c 1rom
the DNS data away from the mean value. It is clearly noted that the DNS generated D
values do not go to zero at the scalar bounds.

7 EVOLUTION OF THE SCALAR FIELD

The problems described at the conclusion of the previous two sections stem from a
lack of capability of all of the models in accounting for the variations of the scalar
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FIGURE 8 The Beta density (Pearson Type 1I) for a domain with moving boundaries, and 8 = 0.1.

bounds as the mixing proceeds. For all three models, the PDF is always defined within a
fixed range through its course of evolution. It is easy to show that both the conditional
expected dissipation and the conditional expected diffusion are correctly predicted by all
the models near the mean scalar value. For the erf~!-Normal distribution, this is evident
from Egs. (33) and (41) and can be also shown by analyzing the behavior of Eq. (31)
near the region ¢ = 0, as the variance becomes small. Noting that

: ¢, Vré
Limg~q erf(—)=x —— 44
(¢~0) erf( ¢u) > % (44)
and, from Eq. (11)
. d‘y - _2¢u dd :
Lime2_.0) dt ~ /motdt’ 45)
it is easily concluded that
. do
le(l—ooo) E(¢ ~ 0, t) = —O'E. (46)
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Following the same procedure, it is derived
. €
Lim;_.o0) D(¢=0,1) = -;d). (47)

Due to the similarity of the three closures, it is reasonable to expect similar behaviors
for the other models as well. Equations (46)-(47) indicate a Gaussian-like distribution
near the mean ¢ =~ 0 (Egs. (24,39)). This is in accord with the DNS data. However, at
distances away from the mean value the predicted results do not correspond to that of
a Gaussian field. Neither do these results agree well with DNS data. The deficiency of
the models in predicting the DNS results is made clear by considering the bounds of the
scalar field as the mixing proceeds. This is demonstrated in Fig. 7, showing the temporal
decay/growth of the scalar maxima/minima obtained by DNS. This trend is consistent
with physical intuition, but is not incorporated into any of the three models. In the
AMC and the JET generated frequencies, due to the nature of the translation Z (¢, 1)
and the constraints imposed by Eq. (15), the scalar is always bounded within the same
range. This problem is also encountered in the PF, in that Type 1 and II distribution
families are always defined within the same fixed domain regardless of the magnitude of
the variance.

With the examination of the PDF transport equation, it is shown that the physics
of the problem requires the migration of the scalar bounds toward the mean value
as the mixing proceeds. That is, the instantaneous values of the scalar minima and
maxima change with mixing progression. To demonstrate this, again consider a symmetric
field with a PDE, P,(¢,t), defined within the time-dependent domain of zero mean,
P€[Pmin(t) = —dmax(), dmax(2)]- At all the stages of the evolution, the PDF must satisfy

the physical requirements
Smax (1)
[T msnas=1,

Pmin (' )

Smax(t)
<¢>= / 6PA(,1)dé =0,
%in(’)

Pmax(?)
o) = / &P\(6,1)d9,

in(‘)

(48)
The first of Eq. (48) requires

d ¢mu(')
4 / Pi($,0)dé =0 @9;
d‘ ¢min(')

Evaluating this integral via Leibnitz’s rule, and making use of Egs. (3)-(7), it is shown
that

l(d’"‘a"(‘ ), t)d¢max = —Pl(¢mm(f ) t) ¢mm

_ {%[e.(cp,r)mw, r)]}

¢=¢u

¢II|IX

[d¢mm

Pi(dmax(t), 1) [ - D(¢max(t),t)] P1(¢min(t), 1) - D(¢min(t),l)] =0,
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¢max(0) = ¢u, ¢miN(0) =¢r= —Pu. (50)

Following the same procedure for the second of Eq. (48), yields the obvious requirement

Smax (1)
/4, D8, 1)P1($1)d = 0. (s1)

lnm(’)

The third part of Eq. (48) yields Eq. (12), and

Pi(dmax(t), 1)e(dmax(t), 1) = Pi(bmin(t), 1)e(Pmin(t). 1) = 0,

Pi(émax(?),1) [d?;\ax - D(¢max(’)”)] =
—P(dmin(2), 1) [%’fﬂ - D(¢min(t),t)] = 0. (52)

The remaining parts of Eq. (48) yield higher order statistical information pertaining
to the inner integrated evolution of the conditional expected dissipation and diffusion,
and their relation with the higher central moments. With an additional assumption of a
nonzero PDF within the region of its definition, that is by defining ¢max(#) and @min(¢)
as the extreme locations with nonzero PDF, a combination of Egs. (50) and (52) yields

e(Pmax(t), ) = €(Pmin(1),2) = 0,

dd’max _ 3 =

dt = %l¢max - D(¢max(t)at)’
d Pmin _ O .= .
oo = lbuin = Drin(0). 1),

¢max(0) = du, ¢min(0) = ¢r. (53)

Equation (53) indicates that with fixed boundaries, the conditional dissipation would
adopt a zero slope at the boundaries and the conditional diffusion would also be zero
there. However, Fig. 7 indicates that in a physical situation the boundaries are not fixed
and move inwards as the mixing proceeds. It is interesting to note that this problem
is not observed in the numerical results obtained by the C/D type closures. That is,
while the C/D closures are not capable of predicting the PDF evolution in accord with
DNS data, they do have the mechanism for shrinking the bounds of the composition
space. Obviously, in the context of single-point description without the knowledge of
the dissipation field, it is not possible to determine a priori the temporal bounds of the
scalar field. Therefore, the closures can be modified only by making further assumptions
in describi.g this transport. For a general case, the JET frequencies can be generated
by the original form proposed by Johnson (1949a)

S0
(1)

where the additional parameters A(¢) and g(¢) provide the extra degrees of freedom in
order to account for the variations of the instantaneous boundaries of the composition
domain. For the PF, the problem can be overcome, for example, by corsidering a
“four-parameter Beta distribution”

$(do, 1) = A(1)z ( ) + o(t), (54)
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FIGURE 9a The comparison of the conditional expected scalar _sipation normalized with the total
dissipation with DNS data as predicted by the AMC with the scalar bounds determined from the DNS results.
(a) 6% = 0.079.

Pl(¢7t)=

1 ( ¢ = fmin(t) )“
[¢max(t) - ¢min(t )]B(ﬂhﬂZ) ¢max(t) - ¢min(t)

(l _ ¢ - ¢min(t)
¢max(t) - ¢min(t)

with the extra two parameters being ¢min(t) and ¢max(t). For a symmetric PDF in the
range [0,1] = [@min(t = 0) = ¢¢, Pmax(t = 0) = ¢,]; therefore, the variance decay
can be influenced by increasing G, and/or by decreasing the scalar range A¢(t) =
Pmax(t) — dmin(t). The former recovers the well-known two-parameter Beta distribution
(Pearson Type II), while the latter is approximately equivalent to the LMSE closure
(O’Brien, 1980). This latter case is presented in Fig. 8 showing a symmetric Beta density
with §(¢) = fixed = 0.1. Note that as the mixing proceeds, the variance decays but the
PDF preserves its initial approximate double delta shape. In a physical problem, the
situation is somewhere between these two limiting cases. The exact situation depends
on the characteristics of a particular mixing problem.

The discussions above suggest that in order to predict the final stage of mixing correctly,
the effects of mixing on the shrinkage of the domain must be taken into account. To
demonstrate this point, the results shown in Fig. 7 can be incorporated into the mixing
models to determine the evolution of the conditional expected dissipation and diffusion.
This is done here only for the erf~!-Normal, and the resuits of the conditional expected
dissipation are shown in Fig. 9. In the calculations resulting in this figure, analytical

Ba—1
) ’ ¢min(’) S ¢ < ¢max(t)a (55)
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solutions are not possible for the moving boundary case. This is demonstrated by the
equivalent form of Eq. (29)

1 exp{— [ert=" (o] 1+ —g—)}

222
1+ F

H(t) = “”:‘;%fr‘ il /0

With this equation, therefore, the effect of the temporal variation cf the PDF on the
conditional dissipation is through the 8H /3¢ term in Eq. (28). This term has the form

dH _ —\/id’max(t)'d_} ’72 - ¢ 2 1d¢max
dr 7r(2+'12)d e"p{‘(”?) [erf l(<¢>.,.,,,((:))] HENPT,

¢ RN
(1 %(r)e"‘.’{[“f Gt }+

2 [t )

7 ! crf(l\/%)exp(—zz)dz) . (57)

dz+ §(¢+¢m(r)). (56)

The first term on RHS of Eq. (57) is the same as that in Eq. (30), and the effects of moving
boundaries manifest themselves through the second term. This term cannot be evaluated
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analytically. However, Egs. (56)-(57) show that duc to the direct dependence on ‘1%‘—',
the conditional dissipation does not retain its original functional dependence, suggested
by Eq. (33). Also, Fig. 9 shows that the effect of the moving boundaries is to force the
conditional expected dissipation to zero at the current scalar maxima/minima. Therefore,
the predicted results compare much better with DNS data than those presented in Fig.
4. Due to the similarity of the PDF?s, it is expected that the other two closures would
also behave in the similar fashion.

The influence of boundar?y encroachment is also sensed in the conditional expected
diffusion field. For the erf~'-Normal scalar PDF, the equivalent form of Eq. (41) is

_ 2fmax _ 2
oiw) e en - o 2] |
a 6\ domm
erf (¢m(t))+(¢m(r)) TI (58)

with an average dissipation of

_Aa()  dv 2¢ma(t) 2 d bmax
€(t) = P t2) ’—__724.43_1— —— arctan (7 72+4) TR (59)

Equations (58)-(59) show the influence of the boundary movement through the last term

on the RHS of both these equations. With these additional terms, the normalized form

similar to Eq. (41) is not very useful, and Egs. (58)-(59) are evaluated numerically.
The equivalent of Eq. (58) for the Logit-Normal and the Beta density are, respectively,

_ (¢r2nax 4’2) d'Y - ¢ ¢ d dmax
D) ==y @ 2™ (¢m(:))+(¢m(t)) a > O

1
D@1) = i ( {W_w}(ﬂ,ﬂ)) (61)

An interesting characteristic displayed by Eqgs. (58) and (60) is the influence of the
terms containing the temporal derivative of ¢nmax(?). Note that at the boundaries, Le.
¢ = dmax{t), the first term on the RHS of these equations vanishes, but the last term
prohibits the conditional expected diffusion from going to zero. This is in accordance
with the DNS data as shown in Fig. 6. In order to demonstrate this more clearly, results
are presented in Fig. 10 of the conditional expected diffusion predicted by the erf~!-
Normal, with the input of the variance and the scalar bounds from DNS. A comparison
between this figure and Fig. 6 show the influence of the boundary movement, and a
better agreement between the model predictions and the DNS data. This agreement
is more pronounced at scalar values away from the mean. Near the mean value, the
influence of the boundary migration is slight, as also indicated by Egs. (58) and (59).

8 DISCUSSIONS AND APPLICATIONS

In previous sections, a rather detailed discussion was presented of the problem of scalar
mixing from an initially symmetric binary state. These discussions were primarily intended
to provide a means of assessing the differences between the currently available tools in
probability modeling of the scalar mixing problem. This problem is of significant interest,
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considering the extent of previous works focused on its analysis (Pope, 1976; Pope, 1979;
Pope, 1982; O’Brien, 1980; Dopazo, 1973; Kosaly and Givi, 1987; Pope, 1991; Gao,
1991; O’Brien and Jiang, 1991; Nomura and Elgobashi, 1992). The results obtained here
are particularly useful in highlighting some of the deficiencies of these closures, and in
suggesting future research towards overcoming these drawbacks. There are, however,
many other physical problems that are not subject to the restricting conditions imposed
in these analyses. In this section, therefore, some discussions are presented as to the
practical implications of these models, together with some speculations on their extensions
for future applications.

Perhaps one of the most important practical applications of the closures considered here
is the treatment of reactive flow phenomena. In fact, the most important advantage of
scalar PDF methods is due to their applicability in the modeling of turbulent combustion
(Pope, 1979; Pope, 1985; Pope, 1990; Kollmann, 1990; O’Brien, 1980). The results
generated here can be used directly in the modeling of mixing controlled homogeneous
chemically reacting systems. Namely, in examining the compositional structure of a
reacting system under chemical equilibrium, or in determining the limiting rate of
reactant conversion in a simple chemistry of the prototype Fuel + Air — Products.
The determination of this rate has been the subject of extensive investigations over
the past forty years (see Hawthorne et al. (1949); Toor (1962); Williams (1985)). It is
now well-established that in a mixing controlled binary irreversible reaction of this type,
the statistics of the reacting fields can be related to those of an appropriately defined
conserved scalar (such 7 ¢) (Bilger, 1980; Toor, 1975; Williams, 1985). Therefore, the
frequencies generated hcrein can be utilized for estimating the statistics of the reacting
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tield with an infinitely fast chemistry model in a homogencous flow with initially segregated
reactants under stoichiometric conditions. Albeit very restricting, this problem is of great
practical importance for modeling and design of batch mixers and plug flow reactors
in which these conditions prevail (Toor, 1975; Brodkey, 1981; Dutta and Tarbell, 1989).
Madnia et al. (1991); Madnia et al. (1992) have shown that with the erf~'-Normal
(AMC) and the Beta density models, this rate can be predicted by simple analytical
means. For the Logit-Normal density, a complete analytical solution cannot be obtained
and determination of the statistics requires numerical integration of the PDF. The results
generated by these closures agree with DNS data better than those obtained by means
of the C/D closures (McMurtry and Givi, 1989), or other models previously available
in the chemical engineering literature (Dutta and Tarbell, 1989) (see Givi (1989) for a
review). Also, the results provided by the AMC (Frankel e al., 1992a) are shown to
compare well with experimental data on plug flow reactors if the additional information
pertaining to the evolution of the scalar length scale is accurately provided.

The most obvious issues in regard to the applications of these models are associated
with their extension for the treatment of (1) non-symmetric binary scalar mixing, (2) non-
binary scalar mixing, (3) multiple scalar mixing, and (4) non-homogeneous mixing. The
first problem constitutes a more general form of the binary mixing problem and is also
important for the analysis of non-stoichiometric reacting systems. The second problem is
appropriate for the analysis of other mixing systems in which the initial conditions are not
of a two-feed configuration. The third problem is of interest in reacting systems in which
the transport of a passive scalar (like ¢) is not sufficient for a complete analysis. For
example, any reacting system under non-equilibrium conditions. Finally, the importance
of the fourth problem is obvious in view of the fact that the flow within most practical
mixing devices cannot be assumed homogeneous.

In regard to the first issue, all of the three closures considered here can be used for the
probability modeling of scalar mixing within a fixed scalar domain. The use of the AMC
is straightforward, but the mathematical procedure is somewhat complex (Madnia ez al.,
1992). The Pearson frequencies can be generated easily for non-symmetric problems.
In this case, the Pearson Type I provides a reasonably accurate representation of the
scalar field regardless of the degree of asymmetry of the PDF (Frankel et al., 1992b;
Madnia et al., 1992). The use of the JET in this regard is most difficult, since closed
form analytical expressions are not available for the variance of the scalar by which the
PDF can be characterized (Johnson, 1949a). In treating these problems, therefore, the
first two models can be more r=adily employed and subsequently used for the treatment
of mixing controlled reacting systems under non-stoichiometric conditions. In fact, as
demonstrated by Madnia et al. (1992) the solution of the non-symmetric form of the
AMC and the Beta density provide a very good means of predicting the limiting rate
of reactant conversion in homogeneous reacting flows. However, it should be indicated
that with both models the problem associated with the scalar bounds still exists and must
be dealt with as discussed in Section 7.

In addressing the second issue, it is obvious that the AMC is more appropriate than
the other closures for simulating the mixing problem from an initially “arbitrary” state.
The extension of JET and PF for treating multi- (higher than bi-) modal distributions
have been reported in statistics literature. However, as the degree of modality of the
PDF increases the procedure becomes more complex and not suitable for practical
applications. Fortunately, in most mixing problems in simple flows, i.e. homogeneous
turbulence and turbulent shear flows, the PDF exhibits strong bimodal features (Madnia
et al., 1992; Frankel et al., 1992b). In those cases, the use of the Beta density can be
justified. In fact, in non-homogeneous flows it is easier to use this density, at least until
further development of the AMC for practical applications (see Frankel et al. (1992b);
Gaftney et al. (1992)).
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The extension of all of the three models in describing multi-scalar mixing is possible.
The problem naturally falls within the realm of the multivariate statistical analyses. In these
analyses, the implementation of the AMC is relatively straightforward since it provides
a transport equation for the joint PDF’s of the scalar variable in a multivariable sense
(Pope, 1991). However, it is not presently clear how to devise an efficient computational
procedure, typically based on Monte Carlo methods (Pope, 1981), for the numerical
treatment of these equations. Some work in this regard is currently under way (Valino
and Gao, 1991). The extension of assumed distributions based on the Beta density for
treating multi-scalars is more straightforward but less trivial to justify. The most obvious
means is to implement the multivariate form of the PF. The direct analog of the Beta
density is the Dirichlet frequency (Johnson, 1987, Narumi, 1923; Johnson and Kotz,
1972). The application of this density in modeling of multiple species reactions has been
discussed by Girimaji (1991a); Girimaji (1991b); Gafiney et al. (1992). However, the
use of the Dirichlet frequency cannot be justified for modeling of reacting flows in a
general sense (Frankel, 1992). Finally the extension of the JET in generating multivariate
frequencies has been reported in statistics literature since the subsequent work of Johnson
(1949b). As one may suspect, the procedure is more complex, and the same reservations
as those associated with the Dirichlet distributions apply.

All of the models considered here can be extended for the analysis of non-homogeneous
mixing (and reacting) systems. Obviously, in most cases, the problem requires numerical
integration of the appropriate conservation equations. For instance, the AMC can be
invoked in the mixing step of a fractional stepping procedure, similar to that of typical
Monte Carlo procedures (Pope, 1981). The PF densities (e.g. Beta or Dirichlet) and JET
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gencrated frequencics require modelled transport equations for the first two moments
and cross moments of the scalar ficld. These equations, “hopefully”™, include the cssential
information pertaining to thc spatial inhomogcneity of the flow. Naturally, the PDF is
not generally symmetric, and must be determined from the knowlcdge of the parameters
B, 2,7, A o, and the local dmax(?), Pmin(?) values. With this information, all the higher
order statistics of the scalar field can be determined. In regard to this last issue, it must
be indicated that the Beta density has been extensively used for the modeling of non-
homogeneous reacting systems (e.g. Rhodes (1975); Jones and Priddin (1978); Lockwood
and Moneib (1980); Janicka and Peters (1982); Peters (1984); Frankel er al. (1992b);
Gafiney et al. (1992); for recent reviews, see Givi (1989); Priddin (1991)). Due to their
special mathematical properties, the Beta and/or the Dirichlet frequencies yield relatively
simple analytical solutions for the higher order statistics of the reacting fields. From
this point of view, the use of the PF is more practical than the AMC since the solution
procedure does not require the numerical treatment of the PDF transport equation. This
point has been discussed in detail by Girimaji (1991b). However, as indicated above, the
use of the Dirichlet frequency cannot be justified for modeling of unpremixed reacting
flow in a general sense. Also, there is no way of implementing this density directly for
modeling of non-equilibrium flames, involving strong correlation of the temperature and
the species mass fractions. Even with the assumption of statistical independence of the
reacting species and the temperature, the question of the local scalar range imposes a
severe restriction on the validity of this approximation. For example, it is demonstrated
by Gafiney et al. (1992) that in the modeling of a reacting turbulent shear flow, depending
on the a priori choice of the magnitudes of the local scalar bounds the predicted results
can be altered significantly. Obviously, this problem is not eliminated with the usage of
JET frequencies in either a univariate or multivariate sense.

9 CONCLUDING REMARKS

It is shown that the family of frequencies generated by the Johnson-Edgeworth Translation
(JET) orovides a reasonable means for statistical modeling of binary symmetric scalar
mixing; in homogeneous turbulence. It is also shown that the results predicted by one
of the members of this family is identical to the solution generated by the Amplitude
Mapping Closure (AMC) of Kraichran. This similarity is useful in two regards: (1)
establishing a mathematical reasoning for the similarity of the probability frequency of
the Pearson Family (PF) and that of the AMC for the description of the problem, and (2)
suggesting the possible use of other members of the JET frequencies in approaches in
which the Probability Density Function (PDF) is assumed a priori. The PDF’s generated
by all these models are shown to compare well with each other and also with the results
obtained by Direct Numerical Simulations (DNS). However, none of the models are
capable of accurately predicting the conditional expected dissipation and the conditional
expected diffusion of the scalar field. This problem is associated with the incapability of
the models to account for the migration of the scalar bounds as mixing proceeds.
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The amplitude mapping closure of Kraichnan { Bull. Am. Phys. Soc. 34, 2298 (1989); Phys.
Rev. Lett. 63, 2657 (1989)] is used for statistical description of the mixing process by Fickian
diffusion of a stochastically distributed scalar variable. This closure is invoked in the context of
an evolution equation for the single-point probability density function (pdf) of the scalar from
initially symmetric binary and trinary states. In the binary case, a simple recipe is provided for
the time scaling relation which is very useful in model implementation. In the trinary case, it is

shown that after a fixed elapsed time, the pdf relaxes to a distribution similar to that of the
binary mixing. The magnitude of this time is independent of the initial extent of departure

from a binary state; however, the rate of evolution toward an asymptotic Gaussian state
depends on the level of the departure. In both cases, the closure predictions for the scalar
flatness factor and the correlation of the mean square scalar—scalar gradients agree well with
those obtained by direct numerical simulations (DNS). However, some features of the results

are likely attributed to inadequacy of the amplitude mapping closure at the single-point level in

are different from those of earlier DNS of mixing in stationary turbulence. These differences l

accounting for the effects of turbulence stretching.

I. INTRODUCTION

Development of the amplitude mapping closure by
Kraichnan and co-workers' has had a significant impact
on statistical modeling of turbulent reacting flows. This clo-
<ure has proven its capability in probability density function
(pdf) modeling of scalar variables in turbulent flows, and
has demonstrated its physical plausibility in a number of
validation studies by means of comparative assessments
against direct numerical simulation (DNS) data.?* Because
of its demonstrated relative strength and its sound math-
ematical-physical basis, it is anticipated that this closure will
be extensively utilized in statistical treatment of turbulence,
and will gradually replace the closures currently in use in
probability modeling of turbulent combustion phenome-
na.**

In this work, our objective is to further examine the
properties of this closure and to gain a better understanding
of the statistical results generated by means of its implemen-
tation. It is also intended to provide a reasonably simple
recipe that can be used in conjunction with this closure for
practical implementations. For these purposes, three dis-
tinct but related problems are considered.

The first problem is associated with the time scaling of
the mapping closure. The consideration of this problem has
been motivated due to the “'single-point™ statistical nature of
the closure. Because of this nature, there is no information
pertaining to the evolution of the appropriate length and/or
time scale associated with the underlying physical processes.
This problem manifests itself by a need for further “exter-
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nal” information for predicting the evolution of these scales.
With availability of such information (by whatever means),
the problem reduces to that of establishing a time scaling
relation by which the mapping closure can be enacted. The
mechanism of utilizing this relation is demonstrated here by '
two simple examples. The examples chosen are those for
which the desired information can be furnished by simple
analytical procedures. However, an outline is provided of .
the implementation of this mechanism for more complex
conditions.

The second problem is the provision of some analytical
results for higher-order statistics generated by the mapping '
closure. This problem is suitable for addressing the relaxa-
tion property of the predicted pdf, including the temporal
evolution of the scalar variance, the scalar flatness, and the '
correlation of the mean square of the scalar and its gradient.
The purpose of this study is twofold: (1) to present an alge-
braic expression for quantitative evolution of the model-gen- '
erated pdf and its instantaneous deviation from Gaussianity,
and (2) to motivate the investigation of the effects of turbu-
lence straining, which is believed to play an important role in
physical characteristics of the mapping closure.™” '

In both these problems our attention is focused on a
basic test problem which has been considered in a number of
previous contributions. * Namely, the probability evolution '
of a stochastically distributed scalar from an initially binary
state in & homogeneous setting. The analytical results pre-
sented here are mostly emanated from the general solution
already available in a previous work.' Also, an eatensive '
DNS data bank ts available by which the extent of vahdity of
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the analytical results can be assessed. In a third problem,
nevertheless, an extension is made for the modeling of homo-
geneous mixing from an initially trinary state. This problem
is considered since it portrays some salient features of the
mapping closure and is believed to provide a more rigorous
means of evaluating its performance. In this problem, the
results predicted by the mapping closure are discussed in
view of their relevance for implementing other simpler prob-
ability frequencies. These results are also compared with
DNS data for a quantitative assessment.

In comparison against DNS data, only the Fickian dif-
fusion process is the subject of main consideration. This is to
remove the complications associated with the effects of tur-
bulent stretching. After establishing a better understanding
of the nature of the closure, its extension to problems involv-
ing turbulent transport can be more adequately addressed.
Also, while the mapping closure (and the general pdf meth-
od) is promoted for statistical description of reacting turbu-
lent flows, this study is concentrated only on nonreacting
transport, i.e., mixing only. However, all the cases consid-
ered are relevant for modeling of turbulent reacting phenom-
ena. The binary mixing problem is pertinent to the study of
unpremixed turbulent reacting flows," and the trinary mix-
ing problem is appropriate in modeling of parallel-consecu-
tive chemical reactions in plug flow reactors."'

il. MAPPING CLOSURE

We consider the following advection—diffusion equation
for a statistically homogeneous scalar field, ¢(x,?) in three-
dimensional homogeneous turbulence,

9 + u-Vé = DV34,

ar
where x is the position vector, ¢ is time, u is the incompress-
ible turbulent velocity, and D is the scalar diffusivity and is
assumed constant. To invoke the mapping closure for ¢ sat-

isfying Eq. (1), let

d(x,1) = X(d,(x),1), (2)
where X(d,.t) is the mapping function. This function is
shown to evolve according to**'°

X , X Ix
—=DEN -+ — |-
ot iy ( * 34, a:b;’,)

The reference scalar field ¢, in Eq. (2) is a time-independent
standardized Gaussian variable with mean square gradient
(£5) which, in general, is time-dependent. Here the proba-
bility mean is denoted by angle brackets. The scalar pdf
P(&,1) is determined from the one-to-one mapping function
X(d!) as

(H

(3)

P (d,)
(30X /3dy)
where P, (4,) is the pdf of the Gaussian reference variable
&, Equations (3) and (4) demonstrate that the incompress-
ible veloeity field has no direct influence on the single-point
scalar pdf evolution, its only role is through the external
time-dependent parameter {£). This parameter is related
to the scalar mean square gradient (& 7) by~

P(o.) = (4)
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2y a_x )2> 2 5
€r=((5))ed (5)
In deriving Eq. (5) use has been made of the fact that ¢,,

is independent of its gradient §,,. Equations (3)-(5) provide
the basic framework by which our analytical results are es-
tablished. The scalar pdf evolution derived from Eq. (1)

satisfies'?
L a°(E{§:I¢}P) -

at o¢-
where E{£ %@} is the expected value of the scalar mean
square gradient conditioned on the given value of #(x,#). As
indicated before, only the Fickian diffusion of the scalar field
is considered, even though at the single-point level the scalar
pdf obeys the same evolution equation [ Eq. (6)] regardless
of the structure of the velocity field.

0, (6)

lil. BINARY MIXING OF SCALAR

In studying the binary mixing of the scalar &, the initial
single-point pdf of ¢ is chosen to be symmetrical about
¢ = 0 with unit variance,

P(gt=0)=4[8(6—1)+6(d+ 1] (7
The initial mapping function, therefore, can be determined
byl()

X(¢(n0) =2H(¢()) - l; (8)

where H is the Heaviside function. The analytical solution
for the mapping function X subject to initial condition, Eq.
(8), is given by

X(é(pr) = erf(Aéu)v (9)
where *‘erf”’ denotes the error function,
A(r)y=e /2(1 —e~?9), (10)

and the dimensionless time 7 is defined by the differential
relation
dr=D(&2)dt. (1)

This equation indicates that 7 is a monotonically increasing
function of time ¢. Having Eq. (9), the pdf of ¢ is directly
determined by Eq. (4).

A. Time scaling

To overcome the remaining closure problem at the sin-
gle-point level, a scaling between the dimensionless time 7
and the physical time ¢, i.e., 7 = 7(t), is required. This rela-
tion can be determined from Egs. (5) and (9) as

2 ] 2
<(3_X)>=;%:ES(7).
ad, T l—-¢ ¥

An analytical result can be derived for the decay of the scalar
variance from Eq. (9),

(@) = (2/m)sin (e N=V(r). (13)
This equation is very convemient in furnishing the time scal-
ing relation. From Eqs. (5) and (11)=(13) this relation,
after some algebraic manipulations, becomes

[D/25 () |dt = [ S(7)/ V() dr,

(12)

(14)
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where the scalar microlength scale A, is defined by
1V/A5 = (£)/(¢). (15)

From Eq. (1), the deca, of the scalar variance is determined
by
d (4’

av) _ 2
7 2D (7).

Therefore, from Eq. (15) the time scaling relation becomes

' ods
V(i) = -2D
() exp( J; 20) )

as would have been obtained from Eq. (14).

In determining this scaling relation for the mapping clo-
sure at the single-point level, the effects of turbulent stretch-
ing on the scalar field as well as other physical processes such
as chemical reactions, molecular diffusion, etc., have to be
included through the scalar microlength scale. For the pres-
ent problem of pure diffusion, the required length scale is
determined by the scalar energy spectrum E, (k,t) accord-
ing to

(16)

(m

Sk E,(k,nydk
ST E, (k)dk

where the scalar energy spectrum E, (k.?) at wave number &
evolves, from Eq. (1), as

E, (k) = E,(k,0) exp( — 2Dk *r)
and

(6% =f | E,(k,n)dk.

)

6
— 18
Al (18

(19)

(20)

The solution, Eq. (19), follows from the linearity of Eq. (1)
with u = 0 and is obtained for a three-dimensional isotropic
scalar field.

The following two examples make the procedure for de-
termining this time scaling relation clear. The first is con-
cerned with the self-similar decay of the scalar energy spec-
trum E, (k,t) from its initial shape,

2( k° k*
E,(k0) = —(——)ex (-——)
m\ k) P 2k

With this spectrum, Egs. (14), (18), and (19) provide the
desired relation,

exp( —27) = sin[(#/2)(1 +4Dk3t) **].  (21)
In the second example it is assumed that the scalar variance
decays according to a power-law  description,
{#°y =(1+ B,t) ". FEquation (16) then yields
A3y =A3(0)(1 + By). With this relation, the corre-
sponding time scaling relation is easily determined by equat-
ing Eq. (13) to the power-law relation for the scalar vari-
ance. Note that the first example also yields a power-law
decay for the scalar variance with a decay exponent n = 1.5.

These examples demonstrate the procedures of estab-
lishing the time scaling relations under simplified condi-
tions. For more complex scenarios, the scalar variance can
be used, when justified. to provide the appropriate relations.
For example. in a quantitative assessment of the closure
against DNS data, the DNS-generated variance and Eq.
{13) would directly provide the scaling. In the absence of
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DNS data, the variance can be determined by means of an
appropriate turbulence closure. An example of this is a re-
cent attempt'* in which the single-point amplitude mapping
closure is employed in conjunction with a two-point spectral
closure."* The results of this combined procedure has shown
to yield a reasonable agreement with experimental data in
homogeneous reacting flows.

B. Some resuits

A quantitative measure of the statistical properties of
the mapping closure is the magnitude of the higher-order
moments and other statistical correlations generated by the
model. It has been shown that although the scalar pdf evolv-
ing from an initial binary state has an asymptotic leading
term of a Gaussian form, the boundedness constraints on the
scalar range prevent it from being exactly so at any finite
time.*® A partial measure of the instantaneous deviation
from Gaussianity is provided by the flatness factor F,,

Fy=(¢")/(¢)". (22)
The temporal evolution of F, is governed by

dF, (£

——=p-=2_" (4F, - 12p,), (23)
@ Dy W

which corresponds to n = 2 of the following general form of
the evolution of even-order standardized moments:'*

A _ p £
ot (%)
X [2n(*") —2n(2n — 1){(x*" ] (24)
Here x and y are the standardized scalar fluctuation
@/{¢*)""? and the standardized scalar square gradient
£3/(&7), respectively. The function p, in Eq. (23) is the cor-
relation function {x’y) which differs from that in Ref. 16 by
unity. An interesting property of Eq. (24) is that all mo-
ments of the variatle x are entirely determined by the corre-
lations of x*" with the variable y. Another feature of this
equation is its validity regardless of the presence or absence
of a homogeneous, incompressible turbulent velocity field.
Using the time scaling relation, Eq. (14), the evolution
equation for F,(7) becomes

df, _ S(r)
dr Vir)
where the correlation function p. is given by
sin '"{exp( —27V/[1 + 2exp( —27)]}
sin [ exp( —27)) .

(4F, — 12p.). (25)

pr={xp) =
(20)

In deriving Eq. (26) the following expression is employed
for the normalized conditional scalar mean square gradient:”

E{&?18Y = E{&°10Yexp{ = 2[ erf (&)1} (27

Equation (25) indicates that the correlation function g, acts
like a sink term in the transport equation for /. This equa-
tion has the solution

I
F(r) = V‘—J. expl3(s =) QU Yy, (28)
with
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sin( exp(s)] ) (29)
1 4 2 sin[ exp(s)] )
Unlike that of variance, the analytical expression for F, does
not portray a simple algebraic form and its evaluation re-
quires numerical integration. Here this integration is per-
formed with respect to the primitive Gaussian reference
variable, ¢,. The results depicting the evolutions of F, and p,
are presented in Fig. 1. In this figure, the abscissa is the
scalar variance conversion, 1 — {#),/{#2), which is a
monotonically increasing function of time. From this figure,
both F, and p, predicted by the mapping closure are shown
to exhibit a monotonic increase in time and approach their
respective asymptotic Gaussian values, 3 and 1. The leading
term in the asymptotic expansion of F, is of the form
F,~3—~4e"% 4+ ¢/(e™*") as 7— 0, and indeed Eq. (25)
yields a stationary solution for a Gaussian state, i.e., F, = 3
and p = 1. This realization of an asymptotic Gaussian state
has been discussed in Refs. 3, 4, and 9 and is also corroborat-
ed in previous DNS studies.'"’

The statistical results predicted by the closure are also
compared with those of DNS of scalar Fickian diffusion.
The DNS data are generated by means of spectral-colloca-
tion simulation of an isotropic three-dimen:-nal diffusion.
The resolution in DNS consists of 64 Fourier nodes in each
of the three directions, which is sufficient for this simulation.
The scalar energy spectrum used to generate the initial scalar
field has the form E, (k) = (k*/k}) exp( — k*/k}) with
ko, = 1.5. With this spectrum, the scalar field is generated
randomly in the spectral domain. This field is then trans-
formed into the physical domain ior statistical analysis. The
temporal evolution of DNS-generated pdf’s from this initial

Q(s) = exp( — s)sin - ‘(
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1
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FIG. 1 Thescalar fluiness factor, Fand the correlation of the mean square
scalar-sealur gradient, g versus the scal sanance conversion,
b(SYyr/ay,,
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condition is presented in Fig. 2. This evolution displays a
qualitatively similar behavior to that of previous stationary
turbulence simulations>'® and is therefore consistent with
the mapping closure predictions.’ A noted feature for the
scalar evolution is that it adopts a transient uniform state’ in
[ = 1,1] at r= In 2/2 at which (¢*) = 1/3 and F, = 9/5.
Such an approximately uniform state has also been realized
in DNS as evidenced in Fig. 2 for the scalar pdf at t = ¢,.

The comparison between the mapping closure results
and those generated by DNS is reasonably good for the flat-
ness factor as demonstrated in Fig. 1. Despite this agree-
ment, there is a difference between the model predictions
and the DNS data for the parameter p, at early times. The
reason for this discrepancy is due to the deviation in match-
ing the initial state of the scalar field in DNS. This deviation,
however, does not seem to have a substantial impact at later
times.

IV. TRINARY MIXING OF SCALAR

For trinary mixing, the initial single-point scalar pdf is
described by

P(¢t=0)=c_ 15(¢0+ 1)
+ cd(dy) + ¢,6(d, — 1), (30)

and the initial mapping is expressed by

19 ¢()>ai
Z(4,0) =10, azd,2p,
- 19 B>¢()v
where
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F1G. 2. DNS results for the exolution of the sealar pdf from an il )
binary state and at four subsequent times 1, 1 .10 1, ~ 1,
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) 2
c_,=_L_J‘ exp(—ﬁ'—)daﬁ(,,
). 2
« 2
6 =—— exp( _& )d¢.,, (31)
V2 Ja 2
cow=l—-c_, —c¢,.

For simplicity, only symmetrical distributions are consid-
J

Py Jexp(2r) — lexp(a’/2a®) exp(( — ¢3/2){1 —
) =

ered, i.e., @ = — B. For this, the corresponding mapping
takes the form’

¢=2(d,7) = il erf(A¢, + B) + erf(Aé, — B) IR
(32)

where B = a/\2aanda = |1 — exp( — 27). From Eq. (4),
the pdf of ¢ when expressed in terms of ¢, becomes

[ exp( —27)/a*]1})

2 coshlad, exp( — 1)/a]

For a = 0 the solution for the double-delta case is recovered.
For a#0 the pdf adopts two distinct distributions depend-
ing on 7 being greater or smaller than 7, = In 2/2. This cor-
responds to the instant at which the pdf is uniform in the
binary mixing case. The behavior of the pdf at ¢ =0 and
& = 1 is of our immediate concern with regard to its relaxa-
tion. The corresponding mapping to these two points is from
&, =0and &, = o, respectively. Equation (33) shows that
at >0,

P(d =0,7) = exp(a’/2a*){ exp(27) — L. (34)

Therefore. it can be shown that P(0,7) portrays a de-
creasing—-increasing behavior in 7, and reaches its minimum
value at 7 = In(1 4 @”)/2. The scalar pdf at é = 1 is infin-
ity when 7<7, and is zero otherwise. The exponential nature
of the pdf as & — 1 is different, however, between = 7, and
7<7,, as can be deduced from Eq. (33). Tiae probability
distribution for a=.2erf(1/3) (ie, ¢ ,=c,=¢,
= 1/3) is shown in Fig. 3 for r < 7, and in Fig. 4 for 7> 7,.
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(33)

f

The pdf’s extracted from the DNS data are shown in Fig. 5.
This figure suggests that at large times the pdf asymptotes to
a bell-shaped distribution. However, a transient uniform
state similar to that in the binary mixing case is not attained
with Eq. (33). Asymptotically, the pdf can be reasonably
approximated by simple known frequencies such as the Beta
density."* To verify the asymptotic Gaussianity of this distri-
bution, the Taylor series expansion of Eq. (32) for Z(#,,7)
is considered. The following asymptotic expression is ob-
tained in the limit 4 =0 as 7— co:

Z(de1) = (2/J7) exp( — a’/2a%)Ad,
+ 7 [(1~a®)4¢,]. (35)

This expression indicates that the mapping function has an
asymptotiz linear form in the Gaussian reference variable 8,,,
and thus is itself a Gaussian variable. However, the !eading
exponential term indicates that the rate of evolution depends
on magnitude of the parameter a, i.e., the extent of the init:al
departure from the binary case.

(o)

[+

PG 4 Evolunion of the scalian pdt predhicred by the mapping closnre for e
trenany moang case ot large 2 values
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Unlike the binary mixing case, the expression for the
scalar variance fur the trinary mixing case does not display a
simple algebraic form and its evaluation requires numerical
integration. Similarly, other higher-order moments, such as
F, and p-. can be only expressed by integral expressions. As
before. the numerical evaluations of these integrals are per-
formed with respect to the Gaussian reference variable.

In Fig. 6 resuits are presented of the scalar variance for
several values of the parameter «. This figure indicates that
after an minal transttonal period. all the curves adopt an
eaponential decay in 7 with approximately the same rate of
exponatial decay . This figure also suggests that as the mag-
nitude of the parameter a increases, the inital transitionad

period hecomes somew hat longer. The correspondmyg torm
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of the conditional scalar mean square gradient is obtained in
terms of the reference Gaussian scalar variable ¢, as '

E{£%6} = E{£710} exp( — 248} ) cosh(2484,,),
(36
and the mean square scalar gradient “correlation™ p, is give

by

v

oo versus e nonmabizat scaln i Convceson

e




(Z° exp( — 24°¢}) cosh(24B4,))

P2 = Z Cexpl — 24°8%) cosh(24Bdy))

(37)

Numerical results of the normalized scalar mean square gra-
dient for several values of a are shown in Fig. 7 at different
times. This figure suggests that the results are independent of
r when a is small, i.e,, the binary case.® This clearly reveals
the profound influence of this parameter on the evolution of
the normalized mean square gradient at small 7 values. The
comparison of this quantity predicted by the mapping clo-
sure at @ = 0.335 with DNS results, by virtue of matching
the scalar variance, is shown in Fig. 8. The general quantita-
tive comparison is quite satisfactory and the results display a
qualitatively similar behavior. The temporal evolu.ion of F,
and p, are presented, respectively, in Figs. 9 and 10 for sever-
al values of a. The comparison with DNS at a = 0.335 ex-
hibits an excellent agreement for F, and a reasonably good
agreement for p,. Again the results indicate the influence of
the parameter a on the evolution of both these quantities. A
noteworthy behavior of the predicted results is that during
the course of evolution both F, and p, reach a relative maxi-
mum before monotonically decreasing to their respective
asymptotic Gaussian values of 3 and 1 when a is “sufficient-
ly” large. A somewhat similar behavior has been previously
observed in DNS of an approximate binary mixing by sta-
tionary turbulence.'® As mentioned before, the binary mix-
ing corresponds to @ = 0 with F, and p, evolutions as shown
in Fig. 1. This figure exhibits a monotonic increase in the
magnitudes of these quantities, which is not in accord with
the above-mentioned DNS results. This difference may be
due to (i) deviation of the initial binary states in DNS
and/or (ii) inadequate level (single-point) of the mapping
closure. In relation to (i), it should be mentioned that in Ref.
2 an excellent agreement has been observed of the model
predictions and DNS results for the case of an initially Gaus-
sian diffusive-reactive scalar. The idealized initial delta-like
distributions imposed in the present study provide the ad-
vantage of sirrplifying the analytical procedures, but cannot
be realized esactly in numerical implementation. It is not
easy to elucidate the consequences of the deviation from
such initial conditions, at least at small times. In regard to
(i), in view of the discussions above, it seems that this issue
is important in the presence of a turbulent field. A means of
dealing with the closure problem at this level requires the
escalation of the level of the mapping, e.g., to the scalar and
its gradient.”*
The general agreement between the mapping closure
predictions and the DNS data is noteworthy. However, this
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agreement has been demonstrated here only for the two
cases of binary and trinary initial states. Therefore, further
validation assessments including a wider variety of initial
conditions are recommended. Also, as indicated earlier, the
effects of turbulence stretching are not included in our analy-
sis. The influence of this stretching and the effects of random
advection in homogeneous turbulence are the subject of cur-
rent investigation.”
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Modeling of Isotropic Reacting Turbulence by a
Hybrid Mapping-EDONM Closure

Steven H. Frankel, Tai-Lun Jiang, and Peyman Givi
Dept. of Mechanical and Aerospace Enginecring, State University of New York at Buffalo, Buffalo, NY 14260

A hybrid model is developed and implemented for predicting the limiting bound
of the reactant conversion rate in an isotropic turbulent flow under the influence
of a reaction of the type A+ B— Products. This model is based on the amplitude
mapping closure of Kraichnan for the molecular mixing of a stochastically distributed
scalar, and the eddy-damped quasi-normal Markovian (EDQNM) spectral closure
Jfor the two-point scalar covariance. The results predicted by this model compare
well with available experimental data in both gaseous and aqueous plug-flow reactors,
but point to the need for more detailed measurements in future experimental studies.
With the implementation of the mapping closure, a simple analytical expression is
obtained for the decay rate of the unmixedness. This expression is very convenient
and is recommended for direct practical applications in the modeling and design of

plug-flow reactors.

Introduction

Statistical modeling of the reactant conversion rate in ho-
mogenecous reacting turbulence has been the subject of wide
investigations since the early pioneering work of Toor (1962).
Among the class of statistical methods in use, it is now accepted
that the approach based on the probability density function
(PDF) of the scalar quantities is most appropriate (Hawthorne
et al., 1949; Toor, 1975; Pope, 1979, 1985; Kollmann, 1990).
The principal advantage of this method is based on the fun-
damental property of the PDF, which includes all the statistical
information regarding the reacting field. For this reason, PDF
methods have been very attractive and popular as evidenced
by their wide use in various forms for the statistical treatment
of reacting turbulence phenomena (for recent reviews, see Givi,
1989; Kollmann, 1990; Pope, 1990).

The most systematic means of determining the PDF involves
the solution of an appropriate transport equation governing
the PDF’s evolution. In this equation, due to the nature of
the formulation, the effects of chemical reaction appear in a
closed form. However, the influences of molecular action can-
not be fully described and can be treated only by means of
employing an appropriate turbulence closure. In many pre-
vious applications, this problem has been addressed through
the use of coalescence/dispersion (C/D) models. Examples of

Cotrespondence concermng this article should be addressed 1o S. H. Frankel.
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such models are the early C/D prototype of Curl (1962) (which
was not constructed for turbulence applications, but has been
widely utilized for PDF modeling of reacting turbulence), the
linear mean square estimation (LMSE) theory of O’Brien
(1980), and the closure of Janicka et al. (1979), among others.
While not all of these closures were originally presented in a
C/D form, it is now established that the majority of those in
current use (including the three aforementioned) can be cast
in a generalized C/D mold (Pope, 1982; Kosaly and Givi, 1987).

Despite their wide utilization in modeling the transport of
scalar variables in turbulence, none of the C/D closures cur-
rently in use are physically plausible (Pope, 1982; Kosaly and
Givi, 1987; McMurtry and Givi, 1989). In all of these models,
the C/D-generated PDFs are not entirely consistent with those
either measured experimentally or generated by means of direct
numerical simulations (DNS). Specifically, none of these clo-
sures are capable of producing an asymptotic Gaussian dis-
tribution for the PDF of a conserved scalar from an initially
non-Gaussian state in homogeneous turbulence. This trend has
been observed in DNS (Eswaran and Pope, 1988; Givi and
McMurtry, 1988) and has been corroborated by experimental
measurements (Miyawaki et al., 1974; Tavoularis and Corrsin,
1981). This deficiency associated with the C/D closure has
been long recognized, and within the past decade significant
efforts have been devoted toward developing closures that can
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overcome this nonphysical behavior (for example, Pope, 1982;
Norris and Pope, 1991).

For the past few years, Kraichnan and coworkers (Chen et
al., 1989) have made rather significant progress in devising a
“*mapping closure’ that can effectively deal with the afore-
mentioned problem. This model, in essence, provides a means
of accounting for the transport of the PDF in composition
space, and its validity and physical applicability have been
convincingly evidenced in a number of comparisons against
DNS data (Pope, 1991; Gao, 1991a; Madnia et al., 1991; Jiang
et al., 1992). The results of these investigations indicate that,
at least for isotropic turbulent transport, this closure is superior
to all the previous C/D-type models in depicting a physically
plausible PDF evolution.

Based on this demonstrated superiority, we have chosen to
utilize the mapping closure for the statistical description of
reacting turbulence. For this purpose, we have selected a re-
acting system under idealized conditions compatible with those
considered in many previous works in the chemical engineering
community. Namely, the reaction 4 + B— Products in a con-
stant density, isotropic turbulent flow. In this flow, the limiting
bound of the reactant conversion rate is predicted by assuming
an infinitely fast reaction and ignoring all the nonequilibrium
effects associated with the chemical kinetics. In this setting,
the only unclosed term requiring a model is the evolution of
the appropriate turbulent length scale. This particular closure
s not exclusive to the mapping model per se and is required
in any approach based on a “‘single-point’’ statistical descrip-
tion. For this, we have chosen the eddy-damped quasi-normal
Markovian (EDQNM) spectral closure. This closure is superior
to the commonly used k-¢ models (Launder and Spalding,
1972), since it includes information regarding the transport of
‘‘two-point’’ statistical quantities. However, its feasibility is
currently limited to predictions of flows without spatial in-
homogeneities. This does not produce a severe limitation here,
since most of the available data on plug-flow reactors display
homogeneous characteristics.

In the next section, the problem under consideration is out-
lined along with the specific assumptions made in developing
the hybrid mapping-EDQNM closur«. Salient features of the
riapping closure at the single-point level are discussed. With
this closure, a simple algebraic form is obtained for predicting
the limiting bound of reactant conversion. While this algebraic
relation is very convenient for practical applications, it is not
in a closed form and requires knowledge of the turbulent length
scale evolution. The EDQNM closure is capable of providing
the required length scale information. In the subsequent sec-
tion, the formalities of the hybrid closure are discussed, high-
iighting its relative ease of implementation for practical
modeling of plug-flow reactors. And then we compare the
results predicted by this combined model with laboratory data
for two purposes: (1) to validate the model and (2) to identify
some of the relevant parameters in future experiments for such
validations. These comparisons are validated by results from
a study showing the influence of some factors affecting the
rate of reactant conversion. In Section 4, our findings are
summarized and some suggestions are made for future work.

Description and Formulation of the Problem

The subject under investigation is a binary reaction of the
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type A + B—Products in an isotropic, isothermal turbulent
flow (Toor, 1975; Brodkey, 1975, 1981). The two species A
and B are initially segregated and are supplied under stoichi-
ometric conditions. The flow field is assumed constant density,
and the influences of the chemical reaction on the dynamics
of the turbulence are ignored. The turbulent velocity field is
assumed stationary to avoid the complications associated with
a varying (decaying) turbulence. This field is parameterized by
means of a temporally invariant energy spectrum for the ve-
locity. In this setting, the maximum rate of the reactant con-
version is obtained from our hybrid model by implementing
the assumption of an infinitely fast chemistry. All the species
involved in the reaction are assumed to have identical diffusion
coefficients and the same thermodynamical properties. Under
these conditions, the statistical behavior of the reacting scalars
A, Bisrelated to that of a conserved Shvab-Zeldovich variable,
3. This variable is arbitrarily normalized in such a way as to
yield — 1 sg=<1. In the framework of the single-point descrip-
tion, the PDFs of the reactants 4 and B, denoted by ®,({,
t) and ®4(Y, t), respectively, are the same for an equivalence
ratio of unity. These PDFs are related to that of the Shvab-
Zeldovich variable ® (¢, 1) by the relation (Toor, 1962; Bilger,
1980):

Calh)=Balhat) = Byl41) +3 b, )

where & is the delta function. Equation 1 demonstrates that
all the information pertaining to the statistical behavior of the
reacting field is available at all times if the PDF evolutio: for
the conserved scalar field is known. For this, we have employed
the mapping closure.

Mapping closure

The implementation of this closure involves a mapping of
the random field of interest ¥ to a stationary Gaussian reference
field 9, via a transformation ¥ = x(5, 7). Once this relation is
established, the PDF of the random variable y, ®(y), is related
to that of a Gaussian distribution Pg(3) via (Chen et al., 1989;
Pope, 1991):

-1
G(w,t)=Po(n)<‘;—:) , 0S5 400, )

In light of this transformation, it is clear that since the
random field changes with time, so must the mapping function.
Therefore, the probability distribution of the scalar is deter-
mined from the knowledge of this mapping function. The
transport equation for this function has been developed by
Chen et al. (1989). Here, we present only the final results:

ax ax  Fx
—= - =, 3
at " dan * n’ @
In this equation, f is a normalized time within which the scalar

length scale information is imbedded. The general solution of
this equation has the form (Gao, 1991a; Pope, 1991):
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VI +1

x(n.0) = m s_ .x(f ,0)

(vexp(~ D) = 811 + EGY]
“"{' Gy

}d [P ()
where L is related to the normalized time by:

E(7Y =exp(27 - 1). )

For the case of initially segregated reactants, the corre-
sponding forms of the initial PDF and the mapping function
are:

O W= Y= 1)+3 50+ 1, ©

x(m0)=2H(m-1, ™

where H is the Heaviside function. Thus, the solution is ob-
tained by substituting Eq. 7 in Eq. 4 to yield:

D=erf( ——),
Xmfy=er (ﬁm) ®

and consequently, from Eq. 2:

- =~ I 2 -
®ylx(n.0).1]) = —(2'—) exp{-% {1- }:(z)"]} . )

With a combination of Eqs. 1 and 9, all the single-point
statistical information regarding the reacting scalar field is
determined. A parameter that provides a good measure of the
reactant conversion and has been the subject of numerous
experimental measurements is the ‘‘unmixedness,” ¥2. This
parameter is defined as the normalized fluctuation correlation
of the two species (Toor, 1975):

{ab)
¥i= .
{ab),

(10)

where ¢ ) denote the ensemble average, and a,b are the con-
centration fluctuations of the two reactants. The subscript 0
indicates the initial time, that is, at the inlet of the reactor.
The temporal evolution of the unmixedness is provided by a
combination of Egs. 1, 9 and 10. After some algebraic ma-
nipulations, the final result is in the form (Madhia et al., 1991):

- N2
¥i(i) = {I-M} . (n

Having such a simple algebraic form for the unmixedness pa-
rameter is certainly very pleasing. In the manner presented,
however, this equation cannot be compared directly with ex-
perimental data. This is due to the form of the final result.
The decay of the unmixedness is presented in terms of the
normalized time ¢ (which as indicated before contains the length
scale information), not the physical time 7. Note that it is the
physical time ¢ that can be translated to the physical axis of
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the reactor, x, for comparison against actual measurements.
In the context of single-point analysis, the relation between
this time and the normalized time 7 cannot be described. This
demonstrates the need for some external means by which the
knowledge of two-point statistics can be brought into the anal-
ysis. To provide this information, we have used the EDQNM
spectral closure.

EDQNM closure

The formulation presented in the previous section would be
in a closed form with the knowledge of the parameter L. Mak-
ing the assumption that the evolution of the length scales is
the same under reacting and nonreacting conditions, the
knowledge of the variance of the Shvab-Zeldovich variable,
3, would be sufficient to cast Eq. 11 in a closed form. To
account for this length scale, the model employed in this work
is based on a'two-point closure, namely the EDQNM model.
This model is a *‘single-time’’ (but still two-point) closure, and
compared with other satisfactory stationary spectral closures,
its computational treatment is relatively less demanding (see
Herring et al., 1982, for a review of all spectral closures cur-
rently in use). Because of this property, the EDQNM has proven
very powerful in turbulence modeling and has been widely
utilized in many investigations (see Orszag, 1977; Herring et
al., 1982; Lesieur, 1990, for review).

The form of the EDQNM closure in use here is similar to
those of Larcheveque and Lesieur (1981) and Eswaran and
O’Brien (1989). This is in the form of a physical-space diffusion
equation for the two-point scalar covariance in spherical co-
ordinates with an eftective diffusivity, that is, laminar plus
turbulent. This form is relatively simple in appearance, but
still contains most of the essential physics of the Navier-Stokes
equations. For the readers who are not familiar with the model,
we describe the derivation of the final physical space transport
equation for the single-time, two-point scalar covariance. The
mathematical derivation for this equation is detailed by
Larcheveque and Lesieur (1981) and Lesieur (1991). The de-
rivation of the model begins with the equation for the two-
point covariance in the spectral domain as well as the evolution
equation for the third-order correlation. The quasi-normal
(QN) approximation is based on Millionshtchikov’s (1941) hy-
pothesis and is invoked to facilitate solution of the third-order
correlation in terms of the two-point covariance, thereby clos-
ing the hierarchy of moment equations. The eddy-damping
feature provides a model for the effects of the discarded fourth-
order cumulants, and the Markovianization allows for a re-
laxation toward quasi-equilibrium by nonlinear transfers. The
resulting integrodifferential equation is in the spectral (wave
number) domain and is computationally intensive due to the
triadic interactions that arise from the nonlinearities in the
transport equations. By making assumptions on the form of
the characteristic relaxation time, Larcheveque and Lesieur
(1981) were able to transform the covariance equation back
into physical space and obtain a version more suitable for
computation. This physical space equation in the form utilized
18:

9 19 : 9
Y P(’v')-rz P {lx(r.t)ﬂiblr ” p(r.t)}. (12)

where the scalar covariance p(r, t) is spherically symmetric,
o(r, t)=p(Irl,t)=p(1,t), and is defined as:

April 1992 Vol. 38, No. 4 537




(L) = (HxHx+1.0)). 13)

In Eq. 12, the molecular diffusivity is D, and the turbulent
eddy diffusivity, denoted by X, is defined by:
x’nta 59.’5.’ —_— =2
(rnt)=Jr \ (E(x )[3\/; («r) Jm(‘r)]dx. (14)

where J,,, is the Bessel function of order 3/2, and x denotes
the wave number in the spectral domain.

The eddy diffusivity is determined by the turbulent kinetic
energy spectrum function E(x, ). An appropriate EDQNM
transport equation can also be constructed for this spectrum
by a similar procedure as outlined above. In this work, how-
ever, it is assumed that the turbulence field is stationary; there-
fore, this spectrum is temporally invariant, £= E(x). Finally,
the quantity 6,(¢), which provides a measure of the charac-
teristic time for triad interactions, is modeled as:

1 —exp(— [g* () + »d}t)

0. = . 1%

Here, » is the kinematic viscosity, and the term u“(x) is the
eddy relaxation frequency which is a measure of the straining
effect of scales larger than x~' on mode x. This term is modeled
as (Larcheveque and Lesieur, 1981):

B () =A" [ _gop’E(p)dp] , (16)

where A" is a constant taken as 1.3 (Herring et al., 1982).

Mode! Implementation and Comparison with Lab-
oratory Data

With a combination of these two models, the closure for
the statistical variations of the scalar field is completed. The
mapping ciosure provides an analytic expression for the decay
rate of the unmixedness, and the EDQNM complements this
relation with an estimate of the real-time evolution for the
variance of the Shvab-Zeldovich variable. It is assumed that
the evolution of the length scales of the Shvab-Zeldovich vari-
able is not affected by the presence of the chemical reaction.
This is a reasonable assumption in view of the recent findings
of Jiang (1990) and Gao (1990). With this model, the evaluation
of the statistical quantities, at least up to second-order statistics
(including the unmixedness), is straightforward. However, the
implementation of the EDQNM requires numerical integra-
tion. Here, the solution of Eq. 12 is obtained by the Crank-
Nicolson finite difference scheme, and the numerical integra-
tion for the relaxation time and the eddy damping rate (the
righthand side of Eqs. 14 and 16) is accomplished using the
Clenshaw-Curtis numerical quadrature (Engels, 1980).

In comparing the results generated by this hybrid model to
those of laboratory measurements, the information regarding
the parameters describing the turbulent field is necessary. The
values of these parameters depend on the particular turbulent
flow under consideration and must be specified a priori. This
requirement presents a difficulty when making detailed quan-
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titative comparisons with experimental data, simply because
of an apparent lack of extensive measurements in reacting
turbulent flows. Therefore, it is necessary in our comparisons
with the available data to make some assumptions with regard
to some of these unknown parameters.

At the level of the formulation considered here, specific
parameters that characterize the turbulence structure are: the
kinetic energy spectrum of the turbulence, E(x); the initial
shape of the scalar covariance, p(r,0); the jet Reynolds number,
Rep; the molecular Schmidt number, Sc; the relative turbulence
intensity, I; the integral length scales of both the velocity field,
L; the scalar field, Lg; and the ratio of the Taylor microscale
of the scalar field, A3, to that of the hydrodynamic field, A.
The magnitude of the hydrodynamic integral scale is coupled
with the energy spectrum, and the initial size of the scalar
integral scale is determined through the specification of the
initial distribution of the scalar covariance. The value of the
molecular Schmidt number depends on the reacting system
under study, and magnitudes of the Taylor microscales are
determined by means of isotropic turbulence scaling relations
(Tennekes and Lumley, 1972; Brodkey, 1975). Along with these
relations, all the other parameters must be specified a priori.
The assumption of stationary flow precludes any time evo-
lution of the energy spectrum of turbulence, but its spectral
distribution must be prescribed. Here, the spectrum is assumed
to have the form:

2
C.x‘exp[ —2({—) ] for 0=<x=<x,
]

E@)={Cx™? for x;<k<K, an

0 otherwise.

The unknowns C,, C,, v, x,, & are determined from the con-
sistency conditions as described by Jiang (1990). The initial
profile of the scalar covariance is assumed to have the distri-
bution:

r r
p(r,O):exp[ - (x;‘l;‘* G )73-';)] ) (18)

where A4, is the initial scalar microscale and C; is a constant
chosen to be 1.6.

The remaining parameters are specified with the aid of data
provided by laboratory measurements. The data considered
here are those of Ajmera et al. (1976) and reviewed by Toor
(1975). These data are selected since they include information
for both gaseous and aqueous reacting systems. Moreover, the
reacting fields considered in these experiments are compatible
with the assumptions made in our model: very fast reaction
involving initially unpremixed, dilute stoichiometric reactants
in a constant density, isothermal homogeneous turbulent flow.
The plug reactor used in these experiments consisted of a mix-
ing device followed by a reaction tube. The mixing device is
a concentric tube in which the reactants are introduced sep-
arately in the inner and outer streams. The reacting fields
considered are the gaseous nitric oxide and ozone (Sc=0.73),
and the aqueous hydrochloric acid and sodium hydroxide
(Sc =700). In both of these systems, reactant conversion data
are available for cases with jet Reynolds numbers of 3,500,
6,700 and 12,000. There is no information provided on any
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Figure 1. Reactant conversion distance in gaseous sys-
tem for Re = 3,500.

turbulent length scales or the turbulent intensities in these
experiments. For comparison, we assume that the reactor tube
diameter, D, is representative of the integral scale of turbu-
lence, L, considering a value for the turbulence intensity, /.
(The ramifications of these assumptions will be examined later.)

The final results of our predictions are compared with ex-
perimental data in Figures 1-6. In these figures, the reactant
conversion (¥?)-distance curves for both gaseous and aqueous
reactions are presented for all three Reynolds numbers. The
relative turbulence intensity in these comparisons was selected

10°°
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o Experimental Data
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xo-lﬂ _ Fu— —_1
lo-ll 10‘0. 10-02 100.A 101.0
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Figure 2. Reactant conversion distance in gaseous sys-

tem for Re =6,700.
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Figure 3. Reactant conversion distance in gaseous sys-
tem for Re=12,000.

as I'= 5%, since this value provided the best overall match with
the data. This intensity level is perhaps somewhat [ower than
that of typical fully-developed, homogeneous turbulent flows.
In most laboratory flows, however, the turbulence field is
usually of decaying nature. Therefore, while at the initial stages
of development the laboratory flow may have a higher tur-
buience intensity, the magnitude of this intensity decreases
further downstream. In our stationary turbulence simulations,
a constant turbulence level is a compromise and, in essence,
represents an average of the corresponding data in laboratory
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Figure 4. Reactant conversion distance in aqueous sys-
tem for Re = 3,500.
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Figure 5. Reactant conversion distance in aqueous sys-
tem for Re =6,700.

lol-ﬂ

experiments. The conditions in these figures are identified by
the symbols G1, G2, G3, L1, L2, and L3, where the letters
indicate the type of experiment (gas or liquid), and the numbers
1, 2 and 3 denote the corresponding Reynolds number (3,500,
6,700, and 12,000, respectively).

The trends observed in these figures generally exhibit good
agreement between the model predictions and the experimental
data for all the cases. In particular, our results indicate that
as the magnitude of the Reynolds number and the Schmidt
number increases, the decay of reactant conversion rate is
slightly faster. These trends are consistent with the results of

1 00.0

2

1071*

1 0-&0 -

o Experimental Data
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Figure 6. Reactant conversion distance in aqueous sys-
tem for Re = 12,000.
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Figure 7. Ratio of reacting to nonreacting unmixedness
in gaseous system for Re = 6,700.

measurements by Toor (1975). In making these comparisons,
however, two points should be made. First, the discrepancies
at high Reynolds number may be attributed to experimental
error as mentioned by Ajmera et al. (1976). Second, in all the
experiments it is implied that the decay of the unmixedness is
independent of the chemistry and thus is the same under both
nonreacting and reacting conditions. Our results do not show
this feature. To demonstrate this point, the unmixedness pro-
file normalized by its value in the limit of no chemistry (mixing
only), [¥*(Da— a))/[¥*(Da=0)], is presented for the case G2
in Figure 7. Note that the asymptotic value of this normalized
variable approaches the constant value of 2/x. This value is
due to an asymptotic Gaussian distribution for the PDF of the
random variable g and is consistent with that obtained in
previous DNS results of Givi and McMurtry (1988) and dis-
cussed by Kosaly (1987). This limiting value is valid only if
the reactants are completely segregated at the inlet of the re-
actor.

Despite the good overall agreement between the model pre-
dictions and the experimental data, our simulations point to
the need for more detailed laboratory measurements of the
turbulence parameters. Since the initial turbulent integral length
scale and the intensity were chosen to best reproduce the ex-
perimental data, it was deemed necessary to investigate the
effects of these parameters. Therefore, a study was undertaken
to determine the influences of the turbulent scale and the rel-
ative turbulent intensity on the conversion rate. For this study,
the gaseous experiment with the jet Reynolds number of 6,700
was chosen.

The results of our model predictions indicate that both the
integral length scale of turbulence and the turbulence intensity
have a significant influence on the extent of reactant conver-
sion. Figure 8 shows the effect of varying the turbulent integral
scale (L). Three cases are considered: L=D, L=D/2, and
L = D/4. These cases are identified by symbols G2, G4, and
G, respectively. The results show that generally, as the mag-
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Figure 8 Reactant conversion distance in gaseous sys-
tem for Re=6,700.

nitude of the integral scale decreases, the reactant conversion
occurs at a faster pace. The integral scale represents the char-
acteristic length of the large-scale turbulent motion. For smaller
L we expect smaller eddies on average and thus a faster eddy
motion which in turn leads to enhanced diffusion and reaction.
A somewhat analogous physical scenario is observed in the
results generated by varying the magnitude of the relative tur-
bulence intensity. This is shown in Figure 9, in which the model
predictions are presented, along with the experimental data,

1000

\112

10—!.0

1 o-z.o
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Figure 9. Reactant conversion distance in gaseous sys-
tem for Re = 6,700.
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for turbulence levels of /= 5%, 10%, 15%, and 20%, identified
respectively by symbols G2, G6, G7, and G8. This figure
indicates that in general, the higher the level of turbulent fluc-
tuations, the faster the decay of the unmixedness. This is also
justified physically. Turbulence fluctuations serve to transport
fluid blobs of one species into contact with fluid blobs of
another species through eddy motion. Hence, by increasing
the intensity of these fluctuations, the stirring mechanism gen-
erated by turbulence becomes more pronounced. This higher
mixing results in a higher reaction, at least in an equilibrium
flow, thereby resulting in a more rapid conversion rate.

The quantitative behavior presented in .hese figures indicates
the dependence of the results on the turbulence parameters.
In future experiments, it is reccommended to provide a more
quantitative measure of these or other relevant parameters that
can be used in model validations.

Concluding Remarks

Development of the mapping closure for molecular mixing
has had a significant impact on the statistical description of
scalar quantities by PDF methods. In this work, we have em-
ployed this closure for predicting the limiting bound of the
reactant conversion rate in a stationary isotropic turbulent
flow. This has been realized for a simple chemistry of the type
A+ B—Products in an isothermal and constant density tur-
bulent field. With the use of the mapping closure, the limiting
bound of the conversion rate can be predicted by a simple
analytic expression. This expression is very convenient due to
its simplicity of utilization for modeling of plug-flow reactors
(for excellent reviews on this issue, see Brodkey, 1975, 1981;
Toor, 1975; and Hill, 1976). However, in the context of a
single-point statistical description, the information pertaining
to the evolution of the turbulent scalcs cannot be recovered
by this expression and must be furnished by external means.
To provide this information, we have implemented the EDQNM
spectral closure for the physical evolution of the ¢ -‘ance
of the relevant Shvab-Zeldovich variable characte the
compositional structure of the reacting field.

The results predicted by the hybridized Mapping-EDQNM
closure portray qualitative features similar to those of labo-
ratory experiments and show trends in agreement with the
results of previous DNS. However, in the absence of detailed
experimental data, quantitative features can be matched only
with laboratory data by making certain assumptions with re-
spect to the initialization of the turbulence scales. The results
of a parametric study reveal the importance of these scales for
practical and realistic applications of the model.

The good overall agreement with experimental data is en-
couraging. This agreement is particularly noteworthy since the
model employed to generate the data is rather simple and is
very easy to implement computationally. Most of the com-
putational efforts are those associated with the numerical so-
lution of the EDQNM closure. In a laboratory experiment,
these calculations can simply be replaced with the measure-
ments of the decay of the covariance of a conserved scalar.
With such measurements, our closed form algebraic relation
can then be used for an efficient and reasonably effective
estimate of the limiting bound of the conversion rate.

There are many ways by which the model can be improved.
It would be desired to extend the hybrid methodology for less
restrictive and more physically complex reacting flow systems;
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for example, nonequilibrium, exothermic chemistry in variable
density, decaying turbulent fields. In such circumstances, the
extension of the mapping closure is straightforward since this
closure is based on the PDF of the scalar quantities and can
account for the effects of complex chemistry. However, the
results may not be presentable by simple analytical relations
as derived here and would require numerical solution of the
mapping function (Valiio and Gao, 1991). Also, the devel-
opment of EDQNM for compressible turbulence is somewhat
more involved, but has been recently initiated (Marion et al.,
1989). These new developments can be utilized in capturing
the effects of compressibility in reacting turbulence phenom-
enon.

In future application, the assumption of spatial isotropy may
be relaxed. The EDQNM model can be used in homogeneous
{but nonisotropic) flows. Also it is possible to implement the
model for a decaying turbulence field. In fact, this model was
originally developed for the hydrodynamic closure before its
application for transport of scalar quantities (Lesieur, 1991).
Therefore, the assumption of stationary turbulence imposed
in these simulations can be relaxed. In the present work, this
was not deemed necessary due to the accvracy range of the
experimental data. Finally, the extension of the mapping clo-
sure to account directly for the length scale information can
be accomplished by an appropriate mapping procedure for the
Jjoint PDF of the scalar(s) and its (their) gradient(s). However,
such a mapping is very complicated and still requires certain
external information for a complete closure (Chen et al., 1989;
Pope, 1991). Some issues regarding the shortcomings of the
single-point mapping closure in predicting the statistics of the
gradient field are discussed by Gao (1991b) and Jiang et al.
(1992).

In comparison with currently available alternatives, our
model seems very attractive, even with the imposition of several
restricting assumptions. This is primarily due to a firm math-
ematical-physical basis of the model and the simplicity of the
final results. As such, the procedure is plausible in both basic
research on the physics of reacting turbulent transport and
practical applications in the modeling and design of plug-flow
reactors. Current work by Kraichnan on further extension of
the mapping closure and identification of its capabilities and
drawbacks would be very useful in the future work in this
direction.
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Notation

A.B reactar.» concentration

Heaviside function

relative turbulence intensity
Shvab-Zeldovich conserved scalar variable
Besse! function of 3/2 order

turbulent eddy diffusivity

hydrodynamic integral scale

scalar integral scale

PDF

Reynolds number

physical radial coordinate

molecular Schmidt number

physical time

spatial coordinate (downstream distance from the reactor
inlet)
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Greek letters

¥ = constant in EDQNM closure
6 = delta function
n = composition space for a Gaussian reference field
© = triad interaction time
x = wave number in spectral domain
A = Taylor microscale for the hydrodynamic field
Ag = Taylor microscale for the Shvab-Zeldovich variable
A" = constant in EDQNM closure
u“ = eddy relaxation frequency
v = kinematic viscosity
p = scalar covariance
L = parameter in mapping closure
x = mapping function
¥® = unmixedness parameter
¥ = composition domain
Subscripts
0 = time zero (inlet of plug-flow reactor)
G = Gaussian
Other symbols
() ensemble average

= normalized value
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Abstract

Results are presented of direct numerical simulations (DNS) of an unsteady, three-
dimensional, temporally developing, compressible mixing layer under both non-reacting
and reacting non-premixed conditions. In the reacting case, a simple chemistry model
of the type A+ rB — (1 + r)Products is considered. Based on simulated results, it
is shown that at sufficiently large Reynolds numbers the global and statistical features
of mixing transition are similar to those observed experimentally. At sufficiently large
Mach numbers, it is shown that eddy shocklets do indeed exist in three-dimensional
(3D) flow. However, the strength of these shocks is less than that in two-dimensional
(2D) layers of the same compressibility level. Aided by the analysis of the DNS data,
the extent of validity of the “Steady Laminar Diffusion Flamelet Model” (SLDFM)
and the “Conditional Moment Method” (CMM) are assessed. In the evaluation of the
SLDFM, DNS results for different stoichiometric coefficients and reaction types are
analyzed. It is shown that DNS results compare well with model predictions as the
magnitude of the Damkdhler number is increased. The agreement is improved as the
value of r is increased and also as the effects of exothermicity become more pronounced.
In the assessment of the CMM, it is shown that the conditional reaction rate can be
reasonably approximated in terms of the conditional averages of the scalar variables.
Also, the cross-stream variation of the conditional scalar mean values is negligible.
However, this is not the case for the variation of higher order moments of the scalar
variables.

1 Introduction

In a recent article Givi et al. (1991) reported the results of Direct Numerical Simulations
(DNS) of a two-dimensional (2D) temporally developing, compressible reacting mixing layer.
The main purpose of these simulations was to assess the effects of compressibility and chem-
ical heat release on the extent of mixing and chemical reaction and to understand their in-

fluence on statistical characteristics of the reacting layer. The main conclusions drawn from
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this work are: (1) both compressibility and exothermicity result in reduced mixing within the
layer, and (2) at sufficiently large Mach numbers, the layer is dominated with “eddy shock-
lets”. The results of this work and those of previous investigations (see Givi and Riley (1992);
Drummond and Givi (1993) for reviews) are useful in view of current needs for understand-
ing the fundamentals of compressible turbulent reacting flows (Libby and Williams, 1993).
In fact, within the past decade, DNS have proven very valuable in providing a means of
investigating the intricate physics of such flows. Some recent examples are the contribu-
tions by McMurtry et al. (1986); McMurtry et al. (1989); Sekar and Mukunda (1990);
Grinstein and Kailasanath (1991); Grinstein and Kailasanath (1992); Steinberger (1992).
Most of these efforts have been primarily focused on the analysis of 2D and/or weakly 3D
flows. This is understandably due to severe computational requirements associated with
complex 3D simulations (Givi, 1989; Reynolds, 1990). However, with larger availability of
supercomputer resources it is now possible to consider more realistic flows with the hope of

gaining new insights into the fundamentals of turbulent combustion.

Our intention in this work is to make further prugress in extracting physical information
from DNS results to portray the structure of turbulent reacting mixing layers. These sim-
ulations are primarily intended for the purpose of understanding the complex nature of 3D
turbulent combustion. Our particular interest is to focus on the following specific issues: (1)
mixing characteristics in pre- and post- transitional regions of the layer, (2) manifestation of
eddy shocklets, and (3) flame structure under non-equilibrium conditions in a turbulent en-
vironment. In regard to the first issue, DNS of transitional mixing layers have been recently
reported by Moser and Rogers (1991); Moser and Rogers (1992). Therefore, it is proposed
to make use of the findings in this work for investigating the phenomena of mixing in 3D
layers. Pertaining to the second issue, previous DNS results of 2D compressible shear flows
have indicated the formation of eddy shocklets (Givi et al., 1991; Menon and Fernando, 1990;
Sekar and Mukunda, 1990; Lele, 1989). However, such shocklets have not been captured in
any previous 3D simulations of parallel mixing layers. Finally, in regard to the third issue,
assessments of closures based on both the steady laminar diffusion flamelet model (SLDFM)
(Peters, 1984; Peters, 1986) and the conditional moment methods (CMM) (Bilger, 1993),
have not been made in the setting of 3D reacting mixing layers.

Due to the nature of the problems considered, most of the simulations presented here are
necessarily of 3D flows. However, some 2D simulations are also performed for the purpose of

comparison. External forcing is imposed to expedite the formation of large scale structures.




However, due to obvious limitations of DNS (Givi, 1989; Reynolds, 1990; Oran and Boris,
1991), several simplifying assumptions are imposed. The nature of these assumptions is
indicated in the discussions which follow.

2 Description of the Problem

The flow configuration considered is that of a 3D, temporally developing mixing layer similar
to that of previous temporal simulations (Riley et al., 1986; McMurtry et al., 1989) (Fig. 1).
The geometry is defined by the cartesian coordinates z (streamwise), y (cross-stream), and =z
(spanwise). The flow field is initialized with a mean hyperbolic tangent velocity distribution
with a specified initial vorticity thickness (,]o0)!. The free stream velocity of the top stream
is denoted by U, and of the bottom stream by —U,,. For simulations involving chemical
reaction, an irreversible second-order reaction of the type A + rB — (1 + r)Products is
considered. Reactant A is introduced in the top stream and reactant B in the bottom
stream. Both finite rate (non-equilibrium) and infinitely fast (equilibrium) chemical reactions
are considered. In the former, the mass fractions of the species denoted by Y;, : = A, B, P
are the primary chemical parameters. In the latter, the normalized mixture fraction J is of
fundamental importance (Williams, 1985). This mixture fraction is defined in such a way as

to yield the limiting values of 0 and 1 in the streams carrying species B and A, respectively.

The compressible form of the Navier-Stokes equations, the energy conservation and the
species conservation equations are considered with Fourier heat conduction and Fickian
diffusion assumptions. No turbulence or subgrid models are employed. All of the species
are assumed to have identical thermodynamic properties and are assumed to be calorically
perfect. The fluid viscosity, the thermal conductivity, and the mass diffusion coefficients
are assumed constant along with the assumption of unity Prandtl and Schmidt numbers.
The ramifications of these assumptions are not considered - being postponed for future
investigations. The assumption of a temporally developing flow does not modify any of the

conclusions to be drawn in regard to the issues considered.

The DNS procedure is based on an explicit time marching procedure by means of a monotone
Flux Corrected Transport (FCT) algorithm (Boris and Book, 1976; Oran and Boris, 1987).

This scheme is second order accurate in time, fourth order phase accurate in space and has

1 A1l variables are listed in the nomenclature




been shown to be reliable for capturing steep gradients (Oran and Boris, 1987). The size
of the computational domain and the magnitudes of the physical parameters that can be
simulated reliably are dictated by computational resources. In order to accommodate the
full growth and development of the Kelvin Helmholtz instability, the size of the domain is
prescribed as L, = L, = Tné,|o , where n is the number of large scale vortices to be formed
in the initial rollup. The length of the domain in the spanwise direction is L, &~ 0.6L,. The
original version of the computer code use here was developed by Miller (1993).

The mass fractions of the two reactants are set equal to unity in their respective origins. This
implies an initially non-premixed, two-feed configuration. The initial temperature, density,
and pressure fields are uniform across the layer. The initial temperature is set at 300K and
the density is set equal to 1kg/m3. The chemical reaction between the two species is taken
to be second order, irreversible with the kinetics mechanisms modeled either as (1) constant
rate or (2) Arrhenius. In the former, the reaction rate parameter K5 is constant. In the
latter, Kr is a temperature dependent function of the form: Kr = Afr exp(—-z%'ﬂ). In this
case, the free stream temperature is used for evaluating the magnitude of the Damkaohler
number (Da). With this convention, the reaction rate for the concentration is expressed
by w; = KrMW,;C,Cp. Combustion exothermicity is measured by the energy liberated
per unit mass by the chemical reaction, —AH®. The magnitude of this energy release is
parameterized by a non-dimensional heat release parameter Ce.

External forcing is imposed at the most unstable mode and the first sub-harmonic of the
hyperbolic tangent velocity profile. These modes are calculated from the linear temporal
inviscid stability analysis of a non-reacting incompressible flow (Michalke, 1964). These per-
turbations are imposed to expedite the formation of vortical structures and the subsequent
interactions amongst the vortices. This is acceptable in view of the fact that stability charac-
teristics of the reacting layer (Jackson, 1992) are not the subject of this investigation. Rather,
it is the subsequent development of the flow which is of interest. The disturbance amplitude
is & 10% of the mean flow. In order to simulate three dimensionality, the 2D disturbances
are multiplied by a function of the form f(z)cos(xz/);). A choiceof f(z) =1- ?-’lrﬂ is found
to provide sufficient 3D effects within a normalized spanwise coordinate —7/2 < z < =/2.
The forcing wavelength of the spanwise disturbance is A, = 0.6\, (Moser and Rogers, 1992;
Pierrehumbert and Widnall, 1982).




3 Presentation of Results

The resolution in each simulation depends on the magnitudes of the physical parameters and
on the size of the computational domain. In 3D simulations, as many as 150 x 150 x 90 grid
points are employed. All 2D simulations are performed in a domain with 256 x 256 grids.
In all cases, the grids are compressed by a factor approximately equal to 3 in the vicinity of
the z — z centerplane. This produces a finer resolution at the center of the layer where the
majority of mixing and chemical reaction occur.

3.1 Flow Structure and Mixing Transition

An important feature of laboratory mixing layers is the phenomenon of mixing transi-
tion. In previous experimental investigations it has been observed that at sufficiently large
Reynolds numbers the onset of transition results in a marked influence on mixing character-
istics (Koochesfahani and Dimotakis, 1986; Masutani and Bowman, 1986; Dimotakis, 1991).
Namely, mixing and chemical reactions are significantly enhanced in the post-transitional
region. In most previous DNS studies of spatially developing flows, this feature could not
be captured due to resolution constraints (Givi, 1989). That is, while many features of
3D transport are elucidated, the effects of mixing transition similar to those of laboratory
layers could not be reproduced. In order to capture the transition process, the procedure
suggested by Moser and Rogers (1992) is followed. The Reynolds number is set to Re = 250,
and the streamwise size of the box (L) is selected in such a way that both single- and
double-pairings of large scale vortical structures are accommodated. These simulations are
of a reacting layer, both with and without the influence of chemical heat release. Consistent
with laboratory experiments, only low compressibility mixing layers are considered. The
convective Mach number in these simulations is kept fixed at M, = 0.2.

For the purpose of flow visualization, in Fig. 2 results are presented of surfaces of constant
vorticity magnitude in a single pairing simulation. The foreground cross section cut shows
contours of vorticity magnitude. This figure shows the pairing of two neighboring large
scale vortical structures and provides a qualitative description of the internal activity of
the pairing vortices. The observance of new small scale structures within the layer is one
indication that the mixing transition process has been initiated. These small scales have

vorticity of both the same and opposite signs as their parent structures. In a reacting layer,




the effect of small scales is to stretch and distort the flame surface within the roller. Figure 3
shows a plot of the mixture fraction contours during the pairing process in both a spanwise
and a streamwise plane. In the limit of infinitely fast chemistry, the surface of the flame is
identified by the contour (J = 0.5). This line is cross hatched for clarity. The warping of the
flame surface by the small scales provides a graphical indication of the initiation of mixing
transition. However, in this flow with just one single pairing the layer becomes saturated

with the completion of the pairing and the transition process is not completed.

Simulations with a larger effective box size accommodate multiple pairing of vortical struc-
tures. Multiple pairing allows for the continued growth of the layer and for the culmination
of the mixing transition process. Figure 4 shows contours of the vorticity magnitude along
a spanwise plane of the layer during the second pairing. The layer is now in a state that
can be justifiably labeled as “turbulent”. The small scale eddies cover an almost uniformly
thick layer across the domain, and large scale structures lie embedded within the turbulence
and are increasingly difficult to distinguish. The qualitative features shown in this figure are
similar to those observed experimentally in the post-transitional region of laboratory mix-
ing layers (Koochesfahani and Dimotakis, 1986). The spanwise distribution of the mixture
fraction located in the braid planes (Fig. 5) is also in accord with experimental observations '
(Bernal and Roshko, 1986) and previous DNS results (Metcalfe et al., 1987). It is noted that
turbulence and background fluctuations destroy the initial symmetry of the layer.

In order to provide a quantitative means of illustrating mixing transition, the statistical be-
havior of the mixture fraction is considered. Similar to the procedure followed by Koochesfa-
hani and Dimotakis (1986); Masutani and Bowman (1986), the Probability Density Function
(PDF) of the mixture fraction at several stages of the layer’s development is considered.
These PDF’s are shown in Fig. 6 illustrating the cross stream variations of the PDF in the
pre-, mid-, and post-transitional regions. The pre-transitional PDF (Fig. 6(a)) is character-
ized by two prominent approximate delta functions located at J = 0,1, i.e. unmixed fluids.
On the other end of the spectrum in Figure 6(c), the PDF’s indicate significantly enhanced
mixing. This is manifested by a large peak of the PDF at the mixed fluid concentration (i.e.
J = 0.5). The probability of finding pure reactants in the center of the layer is approximately
zero. In accord with experimental measurements (e.g. Koochesfahani and Dimotakis (1986);
Masutani and Bowman (1986)), the shape of the PDF is approximately similar across the
layer. The PDF’s during the mixing transition (Fig. 6(b)) show somewhat different char-

acteristics than those in either the pre- or post-transitional regions. In this case, there is a




relatively large probability of finding both unmixed and mixed fluids throughout the layer.
This is due to rapid engulfment of the free stream fluids by the pairing of vortical structures.
However, the highest probability at the center of the layer corresponds to that of pure mixed
fluid. In Fig. 7 the three regions of transition are portrayed in terms of the cross-stream vari-
ation of the probability of finding either pure unmixed fluids (J = 0, 1), or completely mixed
fluid (J = 0.5). In the pre-transition regime (Fig. 7(a)) the flow field is characterized by a
very low probability of finding fully mixed fluid. Once the transition has commenced (Fig.
7(b)) a greater amount of mixed fluid is formed and unmixed fluids are found throughout
the entire layer. Finally, in the post transition region (Fig. 7(c)) the mixed fluid is dominant
and fairly evenly dispersed throughout the shear zone. Pure unmixed reactants can only
be found on their respective sides of the layer and the probability curves adopt a concave

upward shape.

Another perspective by which the effects of mixing transition can be viewed is through
the evolution of pertinent statistical properties. Presented in Fig. 8 is the time evolution
of the product thickness, the vorticity thickness, and the ratio of the two. The product
thickness is calculated from the normalized total mass of product in the limit of infinitely
fast chemistry, and the ratio is referred to as the cross-stream product density (CSPD). The
vorticity thickness shows a sharp increase at the onset of the first pairing (¢* ~ 0.5), and
also at the onset of the second pairing (t* = 1.5). As transition proceeds, the effects of large
vortical structures become increasingly masked by those of the small scales. This manifests
itself in both the vorticity thickness and the product thickness becoming increasingly linear
in time. The slope of the CSPD is initially non-zero due to the external forcing. A relatively
sharp rise during the first pairing (¢* ~ 0.8) indicates the onset of mixing transition. By the
time the second pairing occurs the CSPD has reached a plateau and does not change as the
growth of both product and vorticity thicknesses remain linear. This plateau indicates the
culmination of mixing transition. This feature is further quantified by examining the time
development of the amount of pure mixed fluid within the central shear zone of the layer.
This is depicted in Fig. 9, presenting the probability of finding pure mixed fluid, conditioned
on —1 < y* < 1. This figure exhibits the same type of plateau as that in Fig. 8. Based on
these two figures, it can then be concluded that mixing transition is initiated at ¢* = 0.8 and

is completed by t* =~ 1.4.

In Fig. 10 turbulence intensities are compared for pre- and post-transitional flow fields.

Figure 10(a) presents the root mean square (rms) values for the streamwise velocity. The
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post-transitional field displays larger rms values than does the pre-transitional region. An
opposite trend is observed for the mixture fraction rms values (Fig. 10(b)). Increased mixing
due to turbulence results in a reduction in the magnitude of the scalar fluctuations. Note that
the post-transition profile is characterized by two maxima, in agreement with incompressible
flow studies (Fiedler, 1974). This is in contrast to the pre-transition profile which has its
maxima located at the center of the layer.

Chemical exothermicity typically delays the transition process. This feature has been well
recognized from linear stability analysis of heat releasing parallel mixing layers (e.g. Jackson
and Grosch (1989); Jackson and Grosch (1990); Shin and Ferziger (1992); Colucci (1993), see
Jackson (1992) for an excellent recent review), and is also verified in the present simulations.
Presented in Fig. 11 is the temporal variation of the vorticity thickness of a single pairing
layer for two different heat release rates, Ce = 0 and Ce = 0.2. This figure shows that
the major influence of exothermicity is to decrease the growth of the layer and to delay the
pairing process. There is an exception for early times at which thermal expansion caused
by heat release results in a slight thickening of the layer. This feature is also corroborated
by the results of Fig. 12 indicating a reduction in kinetic energy of turbulence at elevated
heat release. It has become generally accepted that the effect of heat release is to decrease
the amount of product formation in reacting shear flows (Hermanson and Dimotakis, 1989;
McMurtry et al., 1989; Givi et al., 1991; Givi and Riley, 1992; Riley and McMurtry, 1989;
Steinberger, 1992). However, this has been established for constant rate kinetics chemistry
and is not necessarily the case for temperature dependent kinetics. To illustrate this point,
Fig. 13 is presented showing the temporal evolution of the product thickness. In Fig. 13(a),
the temporal evolution of §, is shown for the case of constant rate kinetics. Clearly, the
effect of heat release is to reduce the mass of product formed. This is consistent with
previous findings of McMurtry et al. (1989); Givi et al. (1991). Figure 13(b) presents
results for an Arrhenius kinetics model. The trends observed in this figure are opposite to
those in constant rate simulations. This comparison suggests that the effect of reduced layer
growth is overcome by the increase in reaction rate due to temperature increase in Arrhenius

simulations.




3.2 Eddy Shocklets

Previous simulations of 2D shear flows have demonstrated the influence of compressibility
on mixing characteristics of shear flows (e.g. Givi et al. (1991); Menon and Fernando
(1990); Sekar and Mukunda (1990); Lele (1989); Sandham and Reynolds (1989); Mukunda
et al. (1992)). These simulations indicate that increased compressibility results in a reduced
growth of the layer and also results in the formation of “eddy shocklets.” However, in no
previous simulations of 3D mixing layers have these eddy shocklets been observed (Menon and
Fernando, 1990; Sandham and Reynolds, 1989). Qur present results suggest that the lack of
shocklet formation in previous simulations is perhaps due to the range of low compressibility
levels considered. This may possibly be attributed to the numerical difficulties involved with
high convective Mach number 3D simulations. To demonstrate this, 2D and 3D simulations
are conducted with Re = 350 and with the convective Mach number in the range 0.7 < M, <
2.5. In order to meet the resolution requirements, only simulations with an initialization
appropriate for a single rollup are conducted. In 2D simulations, eddy shocklets are formed
for M. > 0.8 consistent with previous simulations (Givi et al., 1991). In 3D, simulation
results indicate, for the first time, that eddy shocklets do indeed form. However, they are
formed at a higher convective Mach number as compared to those in a 2D flow. Here,
shocklets are observed for M. =~ 1.25 and larger. As is the case for 2D, shocklets form
in the regions above and below the central region of the layer and penetrate into the free
streams on each side. To demonstrate this, shown in Fig. 14 are plots of the Mach number
contour obtained by 3D simulation at M, = 2.5. The contour plots correspond to the center
plane in the spanwise direction. The shocklets are marked by the regions of sharp gradients.
Examination of the contours of the streamwise component of vorticity shows strong vorticity
braids, indicating the 3D nature of the flow. Figure 15 helps to assess the compressive
nature of the shocklets through examination of the divergence of the velocity field. The
strong compression regions of the shocklets do not penetrate very far into the actual mixing
layer. The strongest compression occurs outside of the layer. For a detailed discussion on
the reasoning for the formation of shocklets at this region, we refer to Givi et al. (1991).

To establish whether the regions of steep gradient in these simulations do indeed constitute
a shock, the pressure, density, and temperature ratios across the region are compared with
the values in gas dynamics tables. These values correspond to a perfect gas with y = 1.4.
The maximum normal component of the Mach number corresponding to the flow upstream
of the region of high gradient was determined to be M;, ~ 1.33 at the location with the most




negative value of the velocity divergence at the center spanwise plane. From gas dynamics
tables for this Mach number, ﬁ‘z = 1.897, f} = 1.568, and % = 1.21. The pressure jump
ratio across the sharp gradient zones of Fig. 14 in the positive U,, region is 1.902. Also, the
density and temperature ratios across this region are £ =1.582 and % = 1.201.

It should be mentioned here that 3D simulation results show weaker shocks than those found
in 2D. A plausible explanation for this is that in 3D, the flow has another dimension along
which it can change direction in order to avoid the high pressure regions created by the
presence of vortical structures. In other words, the three dimensionality of the flow allows
a relaxation of the high compressibility regions and thus results in the formation of a less

severe shock.

3.3 Structure of the Reacting Mixing Layer

With the aid of the DNS generated data, the extent of applicability of two recently proposed
models for portraying the structure of non-premixed diffusion flames are examined. These
models are based on the “Steady Laminar Diffusion Flamelet Model (SLDFM) (Williams,
1975; Peters, 1984; Peters, 1986), and a statistical closure based on the “Conditional Moment
Method” (CMM) (Bilger, 1993). Both of these closures provide a means of predicting the
compositional structure of non-equilibrium turbulent flames in such a way as to decouple

the effects of turbulence from those of chemistry.

In the flamelet concept, a turbulent flame is assumed to be an ensemble of laminar diffusion
flamelets (Williams, 1975). At sufficiently large but finite Damké&hler numbers, the flamelets
are assumed 1D and quasi-steady (Peters, 1984; Peters, 1986). In this way, it is speculated
that the flame portrays the same structure as that of an equivalent flame in a laminar
flow configuration. Peters (1986) proposes the flame produced by a steady laminar opposed
jet (Tsuji, 1982) as a simple and effective model for the 1D laminar flow. In this way,
it is straightforward (Lifian, 1974; Spalding, 1961) to show that the evolution of a scalar
variable, say 1 is uniquely determined from the local values of the mixture fraction, J and
its dissipation, x. This implies that ¥ = y(J,x). A comparison of this relation with that
of equilibrium flames, i.e. ¥ = ¥(J) indicates that under non-equilibrium conditions the
dissipation rate provides the additional parameter by which the structure of the flame is to
be described. Furthermore, with the flamelet concept the effects of chemistry with (J, x)

dependence is determined from the flamelet library generated by the solution of the transport

10




equation for the 1D laminar system.

A more direct means of accounting for the J dependence of the reacting variables has been
proposed by the CMM of Bilger (1993) (also see Klimenko (1990); Smith et al. (1992)).
This approach is based on conventional moment methods; however, the statistics are defined
“conditionally” on a given value of the mixture fraction. That is, the dependence on the
mixiure fraction is through the ensemble average of the data but the averages are made
only at given (conditional) values of the mixture fraction (Klimenko, 1990). This implies
< P|J >=< $|J > (z,t,J), where < |J > denotes averaging conditioned on mixture frac-
tion. This procedure, in comparison with traditional moment methods, has the obvious
disadvantage of introducing the extra dimensionality of the conditioning parameter. How-
ever, Bilger (1993) suggests that in typical flames such as those in shear layers, this problem
is offset by cross-stream “independence” of statistical quantities. Also, it is proposed that in
the transport equations governing the evolution of conditional averages, the effects of con-
ditional fluctuations are negligible in contrast to those in typical Reynolds averaging. This
means that in the evaluation of the conditionally averaged reaction rate, the approximation
< w(P)|J >= w(< P}J >) is assumed valid.

In order to study the validity of the two models considered here, DNS results of 3D react-
ing layers are analyzed for both constant and temperature dependent chemistry models for
several values of the Damkohler number and the heat release parameter. Table 1 provides
a listing of the chemistry parameters for the simulations conducted in this study. Due to
computational expenses, only single rollup simulations are conducted. The Reynolds num-
ber is set at Re = 70 for all cases. Also, in order to minimize the compressibility effects all
simulations are performed with M. = 0.2. In order to assess the performance of the models,
it is desired to have the flow as three dimensional as possible. Therefore, simulations are

continued until a time at which the effects of secondary instabilities are most significant.

3.4 Steady Laminar Diffusion Flamelet Model

The configuration of a quasi-1D opposed jet system (Spalding, 1961; Lifian, 1974) is consid-
ered in order to construct a flamelet library. This counterflow configuration has been studied
in many previous investigations (e.g. Pandya and Weinberg (1964); Hahn et al. (1981);
Kim and Williams (1990) amongst others). With the assumption of quasi-steady, incom-
pressible 1D planar flow, the mass fraction of a reacting scalar, 1 is related to the mixture
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fraction through the diffusion equation obtained by Crocco transformation (Lifan, 1974;
Williams, 1989):

& 2
5= 2w ()

In this configuration the dissipation is expressed as:

X = Xs €Xp [—2 erfc™'(2J ))2] (2)

where the parameter x, denotes the magnitude of the dissipation at the stagnation plane
of the opposed jet. In order to compare the DNS to model predictions, at each grid point
a corresponding value of yx, is calculated from Eq. (2). The chemistry parameters {Kr and
Ce) have the same values as those employed in DNS. Therefore, at fixed Ce the flamelet
library yields ¥(J) curves which are functions of the non-dimensional parameter Kr/x,.
This parameter is termed the local Damkohler number. The solution of the system equation
is obtained numerically. For constant rate kinetics at large local Damkéhler numbers, this
solution was found to be in agreement with the analytical results derived by Fendell (1965)
via the method of matched asymptotic expansions. A typical DNS scatter plot of the product
mass fraction (Yp) vs. the mixture fraction is given in Fig. 16. In this figure, 1D opposed
jet predictions are represented by solid curves. The DNS results in the figure correspond to
simulation Run 1 (Table 1). This figure indicates that both DNS scatter and the flamelet
model predictions are strong functions of the local Damkéhler number At a constant value
of the mixture fraction, an increase in Kr/x, corresponds to an increase in product mass
fraction. The agreement between the model and the DNS improves as the local Damkaohler
number is increased. Also, as the mixture fraction approaches its limiting values of 0 and
1, the scatter tends to group together and its deviation from the model becomes minimal.
Therefore, the most restrictive testing of the model should be made at the region near the
stoichiometric surface J,, where the scatter is most severe.

Figure 17 shows product mass fraction scatter plots for the data of Run 1 and Run 2. A
comparison between the two parts of this figure indicates that the effect of increasing the
Damkohler number is to have the scatter closer to the equilibrium curve. Figure 18 presents
product mass fraction at the stoichiometric surface Yp(J = J,) vs. Kp/x, for the data of
Fig. 17. In addition to clarity, this representation has the advantage that the model curves
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of parts (a) and (b) are identical. This figure illustrates the strong dissipation (or Kr)
dependence of the flame. As expected, the deviation from the DNS data is less for the
higher Damkohler number flame (Run 2).

The results pertaining to stoichiometric coefficient of r = 3 (Run 3) are presented in Fig.
19. This figure indicates that the effect of increasing r is to skew the scatter towards the
stoichiometric surface J, = 1/4. This kinetics mechanism represents a better approximation
to bydrocarbon flames which are typically characterized by low values of J,. The migration of
the scatter near the stoichiometric surface suggests that the performance of SLDFM improves

as the magnitude of r is increased.

The stoichiometric product mass fraction scatter plot is compared with SLDFM predictions
in Fig. 20 for Run 4 corresponding to a heat releasing flame. A comparison of this figure
with Fig. 18(b) indicates that the model’s performance is improved over all ranges of the
local Damkohler number. This improvement is due to the influence of thermal expansion,
even though a constant density flamelet library model is used for comparison. The effect
of expansion is to smooth the steep gradients of the scalar field. This smoothing effect is
illustrated in Fig. 21 by means of the PDF’s of the scalar dissipation for Run 2 and Run 4. Of
particular note in this figure is the “double hump” feature of the PDF’s. Flow visualization
shows that these two humps at low and high dissipation rates correspond roughly to the
data sampled at the roller core and braids, respectively. The PDF’s for Run 4 are shifted
towards lower values of the dissipation rate, consistent with earlier findings of McMurtry et
al. (1989). This shifting results in larger values of the local Damkéhler number and, as noted
earlier, improves the validity of the SLDFM. The results for simulations with an Arrhenius

kinetics model (Run 5) portray a similar behavior.

3.5 Conditional Moment Method

Simulation results with the chemistry parameters listed in Table I are also used to examine
the modeling assumptions imposed for implementing the CMM for statistical description of
the compositional flame structure. The first assessment of the model is associated with the
influence of the conditional correlation of a scalar on the conditionally averaged reaction
rate. In order to examine this effect, in Fig. 22(a) results are presented for both < w(¥)|J >
and w(< ¥|J >) in the composition domain. The data correspond to the simulations in
Run 1. The figure suggests that the approximation is reasonably justified. This comparison
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should be compared with that corresponding to the case in which the averages are defined
unconditionally. For this simulation, the comparison between traditional averages < w(y) >
and w(< ¢ >) is presented in Fig. 22(b). This figure indicates that the two averages differ
substantially. Therefore, the approximation < w(%) >= w(< ¥ >) cannot be justified. For
temperature dependent kinetics, the reaction rate is also dependent on the conditionally
averaged temperature, i.e. < T'|J >. The assessment of the CMM approximation for the
data of Run 5 is made in Fig. 23. Similar to that of Fig. 22(a), the agreement is good.

Independence of the conditionally averaged values from the cross-stream direction is impor-
tant from the viewpoint of practicality of CMM (Bilger, 1993). This is tested in Fig. 24
for Run 1, and in Fig. 25 for Run 5. In both cases, the conditionally averaged mass frac-
tions of species A and product are presented vs. the mixture fraction. For the temperature
dependent kinetics, the conditionally averagad temperature is also presented in Fig. 25(c).
The results for the conditionally averaged species mass fractions show small deviations near
the stoichiometric surface. The y independence appears to be approximately valid for these
average quantities. The extent of independence is less for the higher order mor- nts. In
Fig. 26, the conditional variances of the mass fraction of species A vs. y are presented for
Run 1 and Run 5. It is clear from this figure that higher order moments have a strong y

dependence.

In regard to applicability of CMM, two final points are addressed: (1) Its implementation
for describing flames far from equilibrium conditions, and (2) its practical applications for
making actual predictions. In regard to (1), an important consideration is for describing
the compositional structure of flames near ignition or extinction. In these cases, in addi-
tion to mixture fraction another progress variable must be used in defining the conditional
averages. None of the flames considered in the simulations here display extinction. There-
fore, conditioning on the mixture fraction alone is sufficient for constructing averages. For
flames with severe departure from equilibrium, the use of the model may not be practical
since the analysis requires the modeling of higher order conditional moments. Since these
moments do not seem to be independent of cross-stream direction, the extra dimensionality
in the problem formulation makes the analysis somewhat difficult from a practical stand-
point. In regard to (2), the actual implementation of the CMM for cases which temperature
dependence is not significant, the most important extra closure is the expected value of the
dissipation of the mixture fraction conditioned on the value of the mixture fraction (Bilger,

1993). In a recent article, Miller et al. (1993) provide several suggestions for modeling of
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this conditional dissipation. The use of this closure in a transport equation which governs
the conditional mean value of the reacting species mass fractions is very effective in assessing

the mean compositional structure.

4 Conclusions

A monotone Flux Corrected Transport algorithm is employed for direct numerical simula-
tions of a 3D temporally developing forced mixing layer. The objective of this study is to
examine the following specific issues pertaining to the structure of turbulent mixing layers
and flames: (1) the effects of transition on mixing characteristics of the layer, (2) the exis-
tence and manifestation of eddy shocklets in 3D, (3) validity assessment of the steady laminar
diffusion flamelet model in depicting the compositional structure of turbulent flames, and
(4) evaluation of the basic assumptions of the approach based on the conditional moment

method for statistical description of turbulent flames.

Simulation of moderately high Reynolds number flow allows capturing of the cause and effects
of transition on the mixing process. Single point PDF’s of the mixture fraction, extracted
from DNS data, reveal features in accord with laboratory data. In addition to reproducing
many of the qualitative and quantitative results observed in previous experiments, new
insights are gained as to the nature of the transition process. It is shown that during the
transition, both pure unmixed fluids and fully mixed fluids are found with high probability
throughout the entire layer. The effect of chemical heat release is to delay the onset of
pairing and the subsequent transition. In constant rate kinetics, reduced mixing results in
decreased product formation. However, in an Arrhenius reaction case, chemical heat release
causes higher local reaction rates which overcome mixing reduction and results in a relative

increase in product formation.

At sufficiently high convective Mach numbers, (larger than = 1.25) eddy shocklets are found
in 3D mixing layers. Comparison of the shocklets observed in 3D simulations with those
in 2D at the same Reynolds and convective Mach numbers indicates that the shocklets are

stronger in the 2D case.

DNS results for different Damkohler numbers, stoichiometric coefficients, and heat release
parameters are compared with predictions based on a 1D steady laminar opposed jet flame.
For all the flames considered, it is concluded that the performance of the flamelet model
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improves as the magnitude of either the local or the global Damkohler number is increased.
This is understandable considering the flamelet concept is deemed valid at high but finite
reaction rates. Also, as the value of r is increased the agreement between the DNS data and
the model is improved. This is promising in view of the fact that the flame surface in typical
hydrocarbon flames is at low values of the stoichiometric mixture fraction. The results for
both constant and Arrhenius rate reactions with heat release show an improved agreement
with the model in comparison to those of a non-heat releasing layer. This is attributed to
thermal expansion, reducing the instantaneous scalar dissipation rate and thus increasing
the magnitudes of the local Damkohler numbers.

DNS generated results for reacting mixing layers are also used to examine the basic assump-
tions of the conditional moment method. It is shown that the neglect of the conditional
unmixedness term is acceptable. Also, the cross-stream variations of the first conditional
moments (that is, the conditional averages) of the reacting variables can be assumed negligi-
ble. However, higher conditional moments of these variables show cross-stream dependence.

This may be problematic in mathematical modeling of these higher moments.

Nomenclature

A. Chemical species A.

B. Chemical species B.

C;. Concentration of species 3

Cp. Specific heat of the mixture at constant pressure.
Cv. Specific heat of the mixture at constant volume.
E. Activation energy for the Arrhenius chemical reaction.
J. The mixture fraction.

Jo = 1+, Stoichiometric value of mixture fraction.
KF. Pre-exponential factor of the reaction rate.

(Lz, Ly, L,). The size of the computational domain.
M = 7_%&; The convective Mach number.

MW;. Molecular weight of species .
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P. Chemical product.

P. Probability.

PDF. Single-Point Probability Density Function.
Pr. The Prandtl number.

¢*/2. Turbulence kinetic energy.

R. Universal gas constant.

r. Stoichiometric coefficient.

Sc. The Schmidt number.

T. Temperature.

U. Streamwise velocity.

z,y, z Streamwise, cross-stream and spmﬁm directions.
Y;. Mass fraction of species i.

< >. Ensemble average.

< |J >. Ensemble average conditioned on the mixture fraction.

—AH°. Enthalpy of combustion.

Greek Symbols and Subscripts

p. Molecular viscosity.

«. The ratio of the specific heats. = Cp/Cy.

I'. Species diffusivity.

p. Density.

o2. Conditional variance.

w. Reaction rate.

wy. Appropriate reaction rate for the scalar variable .

x- The scalar dissipation.

Xs- Magnitude of the scalar dissipation at the stagnation plane of the counterflow diffusion

flame.
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0o. Free stream.

Normalized parameters

Ce= 5—%’: Heat release parameter.

Da = Eﬁ%k The Damkaohler number. With this definition, po, Da/MW is a non-dimensionalized
parameter.

Re = e=Unbek The Reynolds Number.

t'=%{“.
v =
y1.=f;'

Ze = pf—. The Zeldovich number.

Sples = [ pYp dz dy dz. Total instantaneous product.
8 = &pl¢e/8p|te=0 — 1. Normalized total product.

Solee = -q?gﬂlﬂ:: Vorticity thickness.

8o = 6,]es /8u)0o. Normalized vorticity thickness.

6w|0 = 6u't‘=0-
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Figure Captions

Figure 1. Schematic diagram of temporally developing mixing layer.

Figure 2. Pairing vortical structures as depicted by the plots of vorticity magnitude contours
at t* = 1.2,

Figure 3. Plot of the mixture fraction contours. The isolevel of J = 0.5, corresponding to
flame sheet is cross hatched. (a) a spanwise plane, (b) a streamwise plane.

Figure 4. Post-transitional flow field as depicted by the plot of vorticity contours at t* = 2.0.
Figure 5. Plot of streamwise mixture fraction contours in the braid plane at t* = 1.2.

Figure 6. Probability density functions of mixture fraction vs. y*. (a) t* = 0.5, (b) t* = 0.95,
(c) t* = 1.85.

Figure 7. Probability of finding pure species within the mixing layer. (a) ¢* = 0.5, (b)
t* = 0.95, (c) t* = 1.85.

Figure 8. Temporal evolution of the product thickness, the vorticity thickness and their

ratio.
Figure 9. Probability of finding pure mixed fluid within the mixing layer.

Figure 10. Cross-stream variation of turbulence intensities: (a) streamwise velocity rms, (b)

mixture fraction rms.
Figure 11. Temporal variation of the vorticity thickness.
Figure 12. Cross-stream variation of turbulence kinetic energy.

Figure 13. Temporal variation of product thickness for several values of the heat release

parameter. (a) constant rate kinetics, (b) Arrhenius rate kinetics.

Figure 14. Plot of Mach number contours, M, = 2.5.

Figure 15. Plot of velocity divergence contours, M, = 2.5.

Figure 16. Local Damkohler (Kr/x,) dependence of both DNS (Run 1) and SLDFM data.

Figure 17. Scatter plot of product mass fraction obtained from DNS. (a) Run 1, (b) Run 2.
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Figure 18. Stoichiometric product mass fraction vs. the local Damkohler number. (a) Run
1, (b) Run 2. The solid line indicates SLDFM prediction.

Figure 19. Scatter plot of product mass fraction obtained from DNS for Run 3.

Figure 20. Stoichiometric product mass fraction vs. the local Damkéohler number for Run 4.
The solid line indicates SLDFM prediction.

Figure 21. Probability density functions for scalar dissipation.

Figure 22. (a) Conditionally averaged reaction rates for data of Run 1. (b) Reynolds-

averaged reaction rates for data of Run 1.
Figure 23. Conditionally averaged reaction rates for data of Run 5.

Figure 24. Cross-stream variation of conditional averages for data of Run 1. (a) reactant

mass fraction, (b) product mass fraction.

Figure 25. Cross-stream variation of conditional averages for data of Run 5. (a) reactant

mass fraction, (b) product mass fraction, (c) temperature.

Figure 26. Cross-stream variation of reactant mass fraction variance. (a) Run 1, (b) Run 5.
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Run | 7 | Da | Ce | Kinetic model
1 11 1 0 constant rate
2 1] 5 0 constant rate
3 31 1 0 constant rate
4 1| 5 |0.2| constant rate
5 1| 2.2 | 0.2 | Arrhenius rate

Table
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ABSTRACT

Work is underway at the NASA Langley Research Center to de-
velop a hydrogen-fueled supersonic combustion ramjet, or scramjet,
that is capable of propelling a vehicle at hypersonic speeds in the
atmosphere. Recent research has been directed toward the optimiza-
tion of the scramjet combustor and, in particular, the efficiency of
fuel-air mixing and reaction taking place in the engine. With in-
creasing Mach number, the degree of fuel-air mixing through natu-
ral convective and diffusive processes is significantly reduced leading
to an overall decrease in combustion efficiency and thrust. Even
though the combustor flow field is quite complex, it can be viewed
as a collection of spatially developing and reacting supersonic mix-
ing layers or jets from fuel injectors mixing with air, one of which
serves as an excellent physical model for the overall flow field. This
work is focused on understanding the mechanisms of mixing (or lack
thereof) and on the development of techniques for its enhancement
in compressible turbulent reacting flows. Results generated by direct
numerical simulations (DNS) are first used to demonstrate the mech-
anisms for reduced mixing in shear layers. To counter the effects of
suppressed mixing, several mixing enhancement techniques are then
discussed. The most successful approaches involve longitudinal vor-
ticity induced into the flow field. Several means for inducing vorticity
are studied and assessed.

'The work at SUNY-Buffalo is sponsored by NASA Langley Research Cen-

ter under Grant NAG-11122, and by the Office of Naval Research under Grant
N00014-90-J-4013.




1. Introduction

Research has been underway for a number of years, both in the
United States and abroad, to develop advanced aerospace propul-
sion systems for use late in this century and beyond. One program
is now underway at the NASA Langley Research Center to develop a
hydrogen-fueled supersonic combustion ramjet (scramjet) that is ca-
pable of propelling a vehicle at hypersonic speeds in the atmosphere.
A part of that research has been directed toward the optimization of
the scramjet combustor and, in particular, the efficiency of fuel-air
mixing and reaction taking place in the engine. In the very high-
speed vehicle configurations currently being considered, achieving a
high combustor efficiency becomes particularly difficult. With in-
creasing combustor Mach number, the degree of fuel-air mixing that
can be achieved through natural convective and diffusive processes is
reduced leading to an overall decrease in combustion efficiency and
thrust.

Because of these difficulties, attention has now turned to the de-
velopment of techniques for enhancing the rate of fuel-air mixing in
the combustor. In an early study of high-speed mixing, Brown and
Roshko (1974) show that the spreading rate of a supersonic mixing
layer decreases with increasing Mach number, exhibiting a factor of
three decrease in spread rate as compared with an incompressible
mixing layer with the same density ratio. They conclude that the re-
duced spread rate is primarily due to compressibility. Papamoschou
and Roshko (1986) and Papamoschou and Roshko (1988) also ob-
serve that the spreading rate of compressible mixing layers is signifi-
cantiy reduced over that of incompressible layers. To characterize the
structure of the flow quantitatively, they define a convective Mach
number (Bogdanoff, 1983). The reduction in mixing layer spreading
rate (by approximately a factor of three or four) is shown in these
experiments to correlate well with increasing convective Mach num-
ber. The results of linear stability analyses (Ragab and Wu, 1988;
Ragab and Wu, 1989; Jacksor and Grosch, 1989) also show that the
decreased spreading rate of the mixing layer correlates well with the
convective Mach nnumber.

Faced with this challenge, several techniques have been developed
for enhancing the mixing rates in supersonic mixing layers and jets.
Guirguis et al. (1987) show that the spreading rate of a confined
mixing layer can be improved if the pressure of the two streams




is different. Encouraged by this result, Guirguis (1988) employed
a bluff body at the base of the splitter plate separating the two
streams. It is shown that the body produces an instability further
upstream in the layer and results in a more rapid rate of spread.
Kumar et al. (1989) discuss a number of mixing problems that may
exist in scramjet combustors. Several techniques for enhancing tur-
bulence and mixing in combustor flow fields are suggested, and one
enhancement technique that employs an oscillating shock is studied
numerically. Drummond and Mukunda (1988) have studied fuel-air
mixing and reaction in a supersonic mixing layer and have applied
several techniques for enhancing mixing and combustion in the layer.
They show that when the mixing layer, with its large gradients in
velocity and species, is processed through a shock with strong cur-
vature, vorticity is produced. The vorticity then interacts with the
layer and results in a significant increase of the degree of mixing and
reaction. Drummond et al. (1989) and Drummond et al. (1991)
continued this investigation further by studying fuel-air mixing in a
supersonic combustor. They describe a technique using swept-wedge
fuel injectors (Northam et al., 1989) to enhance the mixing processes
and overall combustion efficiency in the flow. The swept-wedge in-
jectors introduce streamwise vorticity in the inlet air passing over
them, and that air then entrains fuel being injected from the base
of the strut. Fuel-air mixing efficiency is shown to be significantly
improved by the fuel-jet-air interaction. Marble et al. (1987) and
Marble et al. (1990) employ a planar oblique shock to enhance the
mixing between a co-flowing circular helium or hydrogen jet and air.
They show that when the jet is processed by the oblique shock, a
strong vorticity component is induced at the interface between the
low density jet and the relatively high density airstream by the pres-
sure gradient of the shock. Vorticity is generated when the density
and pressure gradients are not aligned. The induced vorticity in the
fuel jet provides a significant degree of mixing enhancement.

With the brief literature survey presented above, our hope in this
article is to describe several numerical experiments on fuel-air mixing
and reaction in mixing layers and jets. The initial studies involve sim-
ulations of mixing layers conducted to improve the understanding of
mechanisms contributing to reduced mixing at high Mach numbers.
The latter simulations involve studies of configurations designed to
improve the degree of mixing and reaction in such flows.




2. Theory

The flow field considered in this study is described by the two-
dimensional (2D) or three-dimensional (3D) Navier-Stokes, energy,
and species continuity equations governing multiple species fluid un-
dergoing chemical reaction (Drummond, 1988; Carpenter, 1989; Drum-
mond, 1991). The finite-rate chemical reaction of gaseous hydrogen
and air is modeled with either a three-species, one-reaction model or
a seven-species, seven-reaction model. The coefficients governing the
diffusion of momentum, energy, and mass are determined from mod-
els based on kinetic theory (Drummond, 1988). Sutherland’s law
is employed to compute the individual species viscosity; the mix-
ture viscosity is evaluated by the Wilke’s law. An alternate form
of Sutherland’s law is also used to compute the individual species
thermal conductivity. The mixture thermal conductivity is then de-
termined by the Wassilewa’s formula. The Chapman and Cowling
law is used to determine the binary diffusion coefficients which de-
scribe the diffusion of each species into the remaining species. Know-
ing the diffusion coefficients, the diffusion velocities of each species
are determined by solving the multicomponent diffusion equation
(Drummeond, 1988). Alternately, in some simulations the calculation
of diffusion velocities is simplified by assuming only binary diffusion
and applying Fick’s law.

Once the thermodynamic properties, chemical production rates,
and diffusion coefficients have been computed, the governing equa-
tions are solved with the 2D or 3D SPARK computer code using Car-
penter’s convective fourth-order symmetric predictor-corrector com-
pact algorithm (Carpenter, 1989). The algorithm is constructed on
a compact three by three stencil which provides high-order accuracy
while allowing boundary conditions to be specified to fourth-order
accuracy in a straightforward manner. Details of the algorithm are
given by Carpenter (1989).

3. Results

With the development of the theory and the solution procedure
described above, several temporally developing mixing layer flows
are studied to explore the phenomenon of reduced mixing with in-
creasing Mach number. These results are summarized in the next
subsection. Following these studies, two strategies for enhancing the
mixing in high Mach number flow fields are examined to determine




their effectiveness for enhancing fuel-air mixing. These strategies are
discussed in sections 3.2 and 3.3.

3.1. Temporally developing mixing layers

The results obtained by direct numerical simulations (DNS) have
been very useful in portraying the problem of mixing in high-speed
turbulent combustion. A reasonably updated review of the state of
progress on DNS of shear flows is provided in the proceedings of the
first ICASE Combustion Workshop (Givi and Riley, 1992). Since
then, DNS have been widely utilized for the analysis of high-speed
flows in both temporally developing and spatially developing mixing
layers (Soetrisno et al., 1988; Lele, 1989; Sandham and Reynolds,
1989; Sekar and Mukunda, 1990; Givi et al, 1991; Grinstein and
Kailasanath, 1991; Steinberger, 1992; Mukunda et al., 1992; Planche
and Reynolds, 1992; Steinberger et al., 1993). To demonstrate the
problems discussed above, it is useful to consider some of the results
of these simulations. Here we discuss the results by Givi et al. (1991)
and Steinberger (1992) of a temporally developing reacting mixing
layer since these results contain all the information pertinent to this
article.

The configuration of a temporally developing mixing layer is
shown in Fig. 1. In this configuration the flow on the top stream
is toward the right. The stream on the bottom side of the layer flows
to the left with the same speed as that on the top stream. The justifi-
cations for temporal simulations are provided in several previous con-
tributions (see Oran and Boris (1987) and Givi (1989) for reviews).
The reacting species are introduced into the layer at the free streams.
The chemical reaction occurring within the flow is idealized to a sim-
ple irreversible second-order form of A + B — Products + Heat.
Reactant A is introduced on the top stream and reactant B on the
bottom stream. Calculations are performed with different values of
the convective Mach number (M.) and the heat release parameter
(Ce) to assess the influence of these parameters on the structure of
the layer (see Givi et al. (1991) for a definition of the non-dimensional
parameters). In this assessment all of the other non-dimensional pa-
rameters are kept constant to isolate the effects of compressibility
and exothermicity.

The influences of compressibility are captured by examining the
effects of the convective Mach number on the rate of chemical product




formation. Figure 2 presents the plot of the product mass fraction
contours for different values of the convective Mach numbers (keep-
ing heat release rate at Ce = 0). This figure shows a reverse relation
between the magnitude of the convective Mach number and the ex-
tent of large scale mixing and chemical product formation. As M,
increases it takes longer for background perturbations to grow, and
the layer becomes more sluggish in responding to such perturbations.
The trend is enhanced as the Mach number is increased; and at the
largest Mach number considered, the rate of the layer’s growth and
the amount of products formed are the smallest.

The response of the shear layer to increased compressibility is
further appraised by examining the statistical and the integral prop-
erties of the flow. In Figs. 3 and 4, the cross stream variations of
the mean and the mean square of the streamwise velocity are shown.
The most significant feature displayed in Fig. 3 is the steepness of
the mean velocity profiles at high Mach numbers. In view of the con-
tour plots of the product mass fraction, this is to be expected, and
the increase in the velocity steepness (caused by the reduced growth
rate) implies a reduced rate of mixing and, thus, decreased product
formations. This trend can also be described by examining Fig. 4.
Note the double hump characteristics of the mean square velocity
profile at low Mach numbers. Also note that as the magnitude of the
convective Mach number is increased, the amplitude of the fluctua-
tions decreases, and this amplitude becomes very small at M, =05
and M, = 1.2.

Another interesting characteristic of the increased compressibil-
ity is captured by examining the plots of pressure contours at high
convective Mach numbers as shown in Fig. 5. The pressure response
in Fig. 5 shows the regions of pressure maxima and minima at the
braids and the cores of the vortices. At higher convective Mach
numbers it is obsi.;ved that the increased compressibility results in
steepness of the gradients of instantaneous pressure and the forma-
tion of “eddy shocklets.” These shocklets are initiated at the shear
zone of the layer and extend to the outer region of the flow near
the boundaries. A rationale for the formation of these shocklets is
provided by noting the increased compressibility within the domain
at high convective Mach numbers. In these cases, the layer is dom-
inated by regions of supersonic and subsonic flows; and in order for
the flow to adapt to high pressures at the braids, it must go through
a shocklet to make the proper adjustment. Also, it is noted that the




currents do not necessarily have to be supersonic at the free streams,
and compression occurs within the flow as a result of the formation
of large scale structures. This point is demonstrated by examining
the contour plots of the instantaneous Mach numbers in Fig. 6. It
is shown in this figure that for the case of M. = 0.8 the flow at the
interior is characterized by localized regions of supersonic (Ma > 1)
and subsonic (Ma < 1) flows. The adjustment from supersonic to
subsonic conditions is provided by the formation of eddy shocklets.
The strength of these shocklets becomes stronger as the convective
Mach number is increased (i.e., as the effects of compressibility be-
come more pronounced).

The results of the simulations presented here are consistent with
those of experimental measurements of Elliott and Samimy (1990)
in that as the compressibility increases, the magnitudes of turbu-
lence fluctuations decrease. The results are also in agreement with
laboratory data of Hall (1991) in that mixing is reduced at higher
compressibility. However, the conclusions drawn here are not in ac-
cord with those of Dutton et al. (1990), Clemens et al. (1991),
and Clemens (1991) who suggest higher mixing at elevated com-
pressibility levels. This issue is the subject of current investiga-
tions. Also, it has been suggested (Menon and Fernando, 1990;
Sandham and Reynolds, 1989) that eddy shocklets form only in 2D
simulations. However, the results of recent simulations by Lee et al.
(1991) and Miller et al. (1993) indicate that such shocklets do indeed
occur in 3D, both in isotropic and in shear flows.

The influence of the heat release on the structure of the react-
ing layer is assessed by examining the amount of normalized total
product mass fraction shown in Fig. 7. In these simulations two
chemistry models are considered; a constant rate kinetics model and
an Arrhenius prototype. Figure 7 shows that at the initial stages of
the layer development, the effect of heat release is a somewhat en-
hanced product formation, whereas at intermediate and final stages a
reverse scenario holds. At early stages. "ect of heat release is to
expand the fluid at the cores of the lay- refore, a mixing zone is
expected and, thus, a higher amount of ;: -suct is formed. However,
as the extent of heat release increases and the layer thickens, the rate
of growth of the instability modes becomes subdued, postponing the
rate of formation of large scale vortices. After the initial stages, the
non-heat releasing simulations predict a sharp increase in the prod-
uct formation; and as the magnitude of the heat release is increased,




the time at which such structures are formed is delayed. The lowest
rate of product formation is for Ce = 6 simulations in which the
only mechanism of mixing is through diffusion. This reduction in
product formation is also evidenced by a comparison between the
contour plots of the product mass fraction with heat release (Fig. 8)
and those without heat release (Fig. 2(a)). Further influences of heat
release become evident by examining its effect on statistical quanti-
ties. In Fig. 9 the normalized profiles of mean streamwise velocity
component are presented. This figure shows that heat liberation re-
sults in a steeper gradient of the velocity and, therefore, less mixing.
This has a substantial influence on the two-dimensional turbulence
transport, as indicated by the cross stream variations of the mean
square velocity presented in Fig. 10. It is shown in this figure that as
exothermicity becomes dominant, the amplitude of the fluctuation
decreases. For the most significant heat release cases (Ce = 6 and
the Arrhenius model), the amplitude of the mean square velocity is
very close to zero, indicating virtually no turbulence fluctuations.

The conclusion drawn here in regard to mixing reduction caused
by exothermicity is consistent with those of laboratory experiments
(Hermanson and Dimotakis, 1989), inviscid linear stability analyses
(Jackson and Grosch, 1990; Jackson, 1992) and previous DNS results
based on low Mach number approximations (McMurtry et al., 1989).
However, it has recently been suggested by Steinberger et al. (1993)
and Miller et al. (1993) that in flames where chemistry is described
by an Arrhenius kinetics model. the effect of heat release is to in-
crease the rate of product formation. This is due to the increase in
the magnitude of the temperature due to heat release which is not
considered in the experiments. Based on this observation, it is rec-
ommended to further assess the effects of exothermicity by means
of laboratory measurements. These measurements must involve a
reacting system whereby the rate of reaction conversion is tempera-
ture dependent and in which the large scale mixing intensity is not
significantly affected by the heat release.

3.2. Mixing enhancement using swept wedges

A number of approaches have been suggested for enhancing the
mixing of high-speed fuel-air flows. Several of these approaches are
discussed in the Introduction. A particularly attractive option has
been suggested by Northam et al. (1989) in their experimental study




of wall-mounted parallel injector ramps used to enhance the relatively
slow mixing of fuel and air normally associated with parallel fuel in-
jection. Parallel injection may be useful at high speeds to extract
energy from hydrogen that has been used to cool the engine and the
airframe of a hypersonic cruise vehicle. The ramp injector configu-
rations are intended to induce vortical flow and local recirculation
regions similar to the rearward-facing step that has been used for
flame holding in reacting supersonic flow.

It is instructive to study some aspects of these experiments here.
Two ramp configurations are considered in the experiment of Northam
et al. (1989) as shown in Fig. 11. In both configurations, hydrogen
gas is injected at Mach 1.7 from conical nozzles in the base of the
two ramps which are inclined at 10.3 degrees to the combustor wall.
The injector diameters are 0.762 cm. The sidewalls of the unswept
ramps are aligned with Mach 2 streamwise airflow from a combus-
tion facility, whereas the swept ramps are swept at an angle of 80
degrees. Each ramp is 7 cm long and ends in a nearly square base,
1.52 cm on a side. Both ramp designs are chosen to induce vortic-
ity to enhance mixing and base flow recirculation to provide flame
holding. The swept ramp injector, because of its delta shape, is
intended to induce higher levels of vorticity and, therefore, higher
levels of mixing. Hydrogen injection occurs at a streamwise velocity
of 1,747 m/s, a transverse velocity of 308 m/s, and a static tempera-
ture and pressure of 187 K and 325, 200 Pa, respectively. The facility
air crosses the leading edge of the wedges at a streamwise velocity
of 1,300 m/s, a static temperature of 1,023 K, and a static pres-
sure of 102,000 Pa. The air is vitiated following heating by a burner
with oxygen, nitrogen, and water mass fractions of 0.2551, 0.5533,
and 0.1818, respectively. The overall fuel-air equivalence ratio is
0.6. Both the unswept and swept parallel injector ramps are studied
computationally. Only fuel-air mixing is considered. The facility test
section surrounding the ramps and considered in the computation is
13.97 cm long and 3.86 cm high. Symmetry planes are chosen to
pass transversely through each fuel injector to define the spanwise
computational boundaries.

Results from the computational study for both the unswept and
swept injector ramps are shown in Figs. 12-17. Figures 12 and 13
show the cross-stream velocity vectors for the unswept and swept
cases at two downstream planes (z = 6.6 and 13.2 cm) oriented per-
pendicular to the test section walls. Part (a) of the figures displays




the unswept ramp results and part (b) shows the swept ramp results.
The planar cut extends from the lower to the upper wall of the test
section, and it slices through the center of the right fuel jet. The left
boundary is located halfway between the two ramps. At the z = 6.6
cm station, which lies just ahead of the end of the ramps, a stream-
wise vortex has formed at the edge of each ramp. The vortex formed
by the swept ramp is considerably larger, however, and it persists
well into the flow above the ramp and to the ramp centerline. At the
z = 13.2 cm station, located 6.2 cm beyond the end of the ramps,
the swept ramp vortex has significantly grown and has moved well
toward the jet centerline. The swept ramp vortex has now inter-
acted with the hydrogen fuel jet, enhancing its penetration into the
airstream. There is pronounced fuel-air mixing enhancement as the
vortex spreads across the test section, convecting hydrogen fuel into
the airstream. Some enhancement is also provided by the unswept
ramp, but it is not nearly as pronounced as that provided by the
swept ramp.

The transport of hydrogen fuel into the airstream can be observed
more clearly by studying the location of hydrogen mass fraction con-
tours in several test section cross planes, plotted with increasing
streamwise distance. Figures 14-17 show the hydrogen mass fraction
contours at four successive downstream planes (z = 7.3, 9.6, 11.3,
and 13.2 cm), again oriented perpendicular to the test section walls.
As before, part (a) of the figures displays the unswept ramp results,
and part (b) displays the swept ramp results. The results in Fig. 14
occur 0.3 cm downstream of the end of the ramp. With the swept
ramp, the larger streamwise vortex has already begun to sweep the
hydrogen fuel across into the airstream and away from the lower wall.
The smaller streamwise vortex of the unswept ramp also begins to
transport hydrogen away from the jet, but not nearly as much as
does the swept ramp. As a result, more hydrogen is transported to-
ward the lower wall boundary layer in the unswept case. The same
trends continue at the z = 9.6 cm station as shown in Fig. 15. At
r = 11.3 cm, as shown in Fig. 16, the swept ramp enhancer has
lifted the fuel jet almost completely off the lower wall. Significant
amounts of hydrogen have also been carried across the test section.
On the other hand, the unswept ramp enhancer still allows a large
amount of hydrogen to be transported along the lower wall, and the
spanwise transport is not nearly as great. At z = 13.2 c¢m, the fi-
nal streamwise station shown in Fig. 17, the spanwise spread of the




fuel jet enhanced by the swept ramp is 46 percent greater than the
spanwise spread due to the unswept ramp. In addition, the swept
enhancer has resulted in the fuel jet being transported completely
off the lower wall. Finally, an eddy of hydrogen has broken com-
pletely away from the primary hydrogen jet, increasing the fuel-air
interfacial area even further. Clearly then, the swept ramp enhancer
significantly increases the overall spread and mixing of the hydrogen
fuel jets.

3.3. Mixing enhancement using shocks

Following the analysis of swept wedge injectors, a study of the
parallel fuel jet configuration described in the introduction is con-
ducted. As noted before, fuel injected parallel to inlet air entering
a combustor is normally assumed to mix relatively slowly with that
air. Therefore, to employ parallel injection, it is quite important to
enhance mixing of parallel fuel jets and air to the greatest extent
possible.

The configuration used for the study of enhanced mixing of paral-
lel fuel jets and air is shown in Fig. 18. It consists of a parallelepiped
6 cm long with a square cross-section 2 cm on a side. A circular
hydrogen jet with a 2 mm diameter is injected into the domain from
the left face. The hydrogen gas is introduced with a streamwise ex-
ponential velocity profile with a peak centerline value of 2,883 m/s,
a temperature of 1,000 K, and a pressure of 101,325 Pa (1 atm.),
resulting in a peak hydrogen Mach number of 1.2. Air, co-flowing
with the hydrogen, is also introduced from the left face at a velocity
of 1,270 m/s, a temperature of 1,000 K, and a pressure of 101, 325
Pa, resulting in an air Mach number of 2. An oblique shock is in-
troduced across the flow from the lower wall, by a 10 degree wedge
also shown in Fig. 18. In the computations, the shock is produced by
specifying the appropriate jump conditions for a 10 degree turning
angle along the lower boundary where the shock enters the domain.

To establish a baseline for mixing and chemical reaction, calcula-
tions are first carried out without the shock. These calculations are
conducted for 4 ms in time until a pseudo-steady state is reached
following 85 computational sweeps of the flow field. Results for
this computation are presented in Figs. 19-22. Figure 19 shows the
streamwise development of the hydrogen jet along its centerline in the
z — z plane. Values of the hydrogen mass fraction, shown as contours




in the figure, are defined in the legend. The hydrogen jet develops
very slowly with only a small degree of mixing. The cross- stream
hydrogen mass fraction distribution at the 6 cm station is shown in
Fig. 20. It is also clear from this figure that very little mixing of the
hydrogen and air has occurred at the end of the domain, with peak
values of hydrogen mass fraction as high as 0.56 still persisting in
the flow. Figures 21 and 22 show the water mass fraction resulting
from chemical reaction in the z — 2 and y — z planes, respectively.
Due to poor fuel-air mixing, reaction occurs only on the edge of the
hydrogen jet, and peak values of water mass fraction of only 0.008
are achieved in the outflow cross-plane at z = 6 cm. Combustion
efficiency for this case rises to only 0.4 percent at the 6 cm station.
Combustion efficiency is defined as the ratio of hydrogen in water
to the total hydrogen, integrated over each cross-plane. Therefore,
credit in efficiency is taken only for exothermically produced final
product water, and not for the remaining product species.

To enhance the degree of mixing and combustion of the hydrogen
jet and air, the flow is then processed through the 10 degree shock. It
was earlier noted that the shock causes the hydrogen jet to split into
a vortex pair and spread quickly downstream. The vortices convect
hydrogen away from the jet centerline in a spanwise and transverse
direction, entraining and mixing the hydrogen with the surrounding
airstream. Reacting results for the shocked jet are given in Figs.
23-29. Figure 23 shows the streamwise development of the hydrogen
jet along its centerline in the z — z plane. The jet passes through the
shock at £ = 1.1 cm and flows downstream at an angle of 10 degrees
to the original horizontal path. Due to jet mixing and initial chem-
ical reaction, no hydrogen mass fraction contour greater than 0.09
exists beyond the 2 cm station. The water mass fraction distribution
resulting from reaction is shown in Fig. 24. Water production begins
a short distance downstream of the shock. Peak water production at
each station occurs downstream along the stoichiometric line roughly
located 75 percent across the water profile. This location is coinci-
dent with the lower hydrogen concentration lying between and above
the stable hydrogen vortex pair. However, water production is still
significant above and below this line as indicated in Fig. 24. The
streamwise temperature distribution in the z — z plane is given in
Fig. 25. Consistent with the previous results, maximum tempera-
tures occur along the stoichiometric line, with a peak temperature
of 2,105 K at and beyond 4.8 cm.




The vorticity field with chemical reaction in the y — 2 cross-plane
at the z = 6 cm station is shown in Fig. 26. Two streamwise vor-
tices have formed in the hydrogen jet, with the left vortex containing
positive and the right vortex containing negative components of vor-
ticity when viewed from the outflow of the domain. This vortex
structure distorts the initial circular cross-section of the hydrogen
jet, entraining fuel and air and enhancing mixing. The jet distortion
can be seen in Fig. 27 which shows the hydrogen species mass frac-
tions at the same station displayed in the previous figure. Hydrogen
is concentrated toward the interior of each vortex with peak values
of around 0.012. Hydrogen is stretched away from the upper portion
of the jet, however, and the mass fraction is most greatly reduced in
that region. This region of reduced concentration favors the high-
est initial degree of combustion since the fuel-air ratio is nearest to
stoichiometric conditions.

Figure 28 shows the resulting water mass fraction distribution
in the y — z plane at the z = 6 cm station. Combustion begins in
the stoichiometric region at the top of the vortices and along the
outer edge of the remainder of the vortices. At z = 6 cm, the flame
has propagated into the interior of the vortex structure such that
significant reaction is occurring near the center of each vortex. The
peak water mass fraction of 0.2 occurs at this location. As shown in
Fig. 29, there is also a significant temperature rise near the top and
near the center of the vortices due to reaction. A peak temperature
of 2,158 K occurs at this location. It is quite interesting to compare
the resulting combustion efficiency for the shocked reacting case with
the unshocked reacting jet case. Recall that in the unshocked case,
the combustion efficiency at z = 6 cm is only 0.4 percent whereas in
the shocked case, a combustion efficiency of 72 percent is achieved.

4. Concluding Remarks

In high-speed airbreathing propulsion systems, the extent of fuel-
air mixing is significantly reduced with increasing Mach number. Di-
rect numerical simulations of reacting mixing layer flows indicate that
there is a reduction in turbulence levels with both increased com-
pressibility due to an increase in either Mach number or heat release.
To counter the effects of suppressed mixing and reaction, two mixing
enhancement techniques have been developed. The first one involves
the use of swept wedges placed in the airstream to introduce lon-




gitudinal vorticity leading to large scale mixing enhancement. The
second technique utilizes the interaction of a shock with the large
density gradient existing between a hydrogen fuel jet « ! the sur-
rounding airstream to introduce streamwise vorticity and mixing.
Both of these approaches have proven effective in providing mixing
enhancement mechanisms in nonpremixed high-speed reacting flows.
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Figure 1. Schematic diagram of a temporally evolving

mixing layer.
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Figure 2. Plots of product mass fraction contours at three
convective Mach numbers (M). (a) M, =0.2, (b) M. =0.8,
©M, =12
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Figure 3. Profiles of normalized mean velocity %? versus the
normalized cross-stream direction -555 for different values of the
convective Mach number. U, represents the free-stream velocity
and 8,}, denotes the vorticity thickness at the initial time.
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Figure 5. Plots of pressure contours. (a) M, =04, (b) M =0.8,
©M =12
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Figure 7. Normalized total product mass fraction versus normalized
time (¢*) for different values of the heat release parameter.
t* = tl[ /L, where L is the size of the computational box.

Figure 8. Plots of product mass fraction contours for M, = 0.2,
and Ce = 1.5.
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Unswept ramp

Figure 11. Swept and unswept ramp fuel-injector configurations.
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Figure 13. Cross-stream velocity vectors for (a) unswept, and

(b) swept, ramp at x = 13.2 cm.




Figure 14. Cross-stream hydrogen mass fraction contours for
(a) unswept, and (b) swept, ramp at x = 7.30 cm.
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Figure 15. Cross-stream hydrogen mass fraction contours for
(a) unswept, and (b) swept, ramp at x = 9.60 cm.




Figure 16. Cross-stream hydrogen mass fraction contours for
(a) unswept, and (b) swept, ramp at x = 11.3 cm.




Figure 17. Cross-stream hydrogen mass fraction contours for
(a) unswept, and (b) swept, ramp atx = 13.2 cm.




Figure 18. Schematic of shocked, parallel hydrogen fuel jet in air.
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Figure 19. Hydrogen mass fraction of reacting, unshocked jet in

x—zplaneaty=1cm.
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Figure 20. Hydrogen mass fraction of reacting, unshocked jet in

y-zplaneatx=6cm.
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Figure 21. Water mass fraction of reacting, unshocked jet in
x—zplancaty=1cm.
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Figure 22. Water mass fraction of reacting, unshocked jet in
y—zplane atx=6 cm.
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Figure 23. Hydrogen mass fraction of reacting, shocked jet in

x—zplaneaty=1cm.
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Figure 24. Water mass fraction of reacting, shocked jet in

x—zplaneaty=1cm.
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Figure 25. Temperature of reacting, shocked jetinx -z
planeaty=1cm.
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Figure 26. Streamwise vorticity of reacting, shocked jet in
y-zplancatx=6cm.
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Figure 27. Hydrogen mass fraction of reacting, shocked jet in
y-zplancatx=6cm.

0.0200 Level H20
0.2048
0.1843
0.1639
0.1434
0.1229
0.1024
0.0819
0.0614
0.0410
0.0205

0.0150 -

SAPWANONDOD

0.0100 PP | —
00050 00100 0.0150

Figure 28. Water mass fraction of reacting, shocked jet in
y-zplane atx=6cm.
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Figure 29. Temperature of reacting, shocked jet in y — z plane

atx=6cm.
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Abstract

Results are presented of numerical simulations of spatially developing, three di-
mensional jets issued from circular and non-circular nozzles of identical equivalent
diameters. Elliptic, rectangular and triangular jets are considered with aspect-ratios
of 1:1 and 2:1. Flow visualization results show that large scale coherent structures
are formed in both cornered and non-cornered jets. The axis-switching phenomenon
is captured in all non-unity aspect-ratio jets and also in the equilateral triangular jet.
The square jet does not show axis-switching; however, the rotation of its axes by 45° is
shown to play a significant role in its entrainment characteristics. All the non-circular
configurations are shown to provide more efficient mixers than does the circular jet; the
isosceles triangular jet is the most efficient one. It is demonstrated that the near field
entrainment and mixing is characterized by the mean secondary flow induced by the
stream-wise vortices. The transport of a passive Shvab-Zeldovich scalar variable is used
to determine the limiting rate of mean reactant conversion in a chemical reaction of
the type Fuel + Air — Products. The results show that the largest product formation
occurs in the isosceles triangular jet and the lowest occurs in the circular jet. It is also

shown that the 2:1 triangular jet has the shortest scalar core whereas the rectangular
jet has the longest core.

1 Introduction

The phenomenon of mixing (or lack thereof) is a subject of crucial importance in devices

involving chemically reacting turbulent flows [1]. In these devices, the flow field produced by

*To whom all the correspondence should be addressed. Tel: 716-645-2433, Fax: 716-645-3875, E-mail:
givi@eng.buffalo.edu.




a “jet” discharging into a stagnant or moving (either in the parallel- or the cross-direction)
fluid is the most common configuration in current use. In the majority of previous inves-
tigations on turbulent jets, circular and planar configurations have been considered [2-T7};
with relatively little effort on the analyses of jets with other cross-sectional shapes {8]. Re-
sults of early investigations of three-dimensional (3D) rectangular jets have been reported
in Refs. [9-11], and of elliptic jets in Refs. [12-15]. In studies pertaining to elliptic jets, it
is now well recognized that the deformation of large scale vortical structures is somewhat
similar to that of an isolated elliptic ring [16,17]. This ring is inherently unstable due to
the azimuthal variation of the “nozzle” curvature which causes a non-uniform self-induction
mechanism. As a result, the ring deforms in such a way that its two axes are interchanged.
This axis-switching mechanism plays an important role in promoting mixing by causing an
increase of the entrainment as compared to that in circular and planar jets. While the extent
of recent literature on elliptic jets is growing, relatively few experimental investigations of
3D jets with “corners” have been conducted. Gutmark et al. [8] use a one-component hot-
wire anemometry system to measure the mean and turbulent characteristics and the effect
of upstream forcing on the flow evolution of several non-circular jets. Their main conclusion
is that the spatial growth rates and the amplification of velocity fluctuations vary around
the circumference of the jet and are dependent on the initial local curvature. More recently,
Gutmark et al. (18] have studied reactive non-circular jets by means of the Planar Laser
Induced Fluorescence (PLIF) technique. They studied the effects of sharp corners on the
dynamics of vortical structures as applied to enhancement of mixing and combustion. These
results suggest that a combination of small- and large-scale mixing in a flow is advantageous

in enhancing the product formation in combustion systems.

Most efforts in analytical treatment of non-circular jets have been based on linear stability
analyses [19-23]. The extent of literature on detailed numerical simulations of 3D jet flows
is very limited. This is understandable in view of the severe computational resources re-
quired for such simulations. With recent advances in supercomputer technology, however,
this situation is gradually changing [24]. Owing to this technology, it is now possible to

perform “model-free” simulations [25] of jet flows without resorting to “turbulence model-
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ing”. Givi [25] subdivides model-free simulations into Direct Numerical Simulation (DNS)
and Large Eddy Simulation (LES). Currently the range of physical parameters, such as the
Reynolds number, that can be treated by model free methods is significantly less than that
in laboratory experiments. Such simulations, nevertheless, have proven very effective in elu-
cidating many important features of turbulent flows; in some cases not easily amenable by

other means.

In this work, we make use of model-free simulations to broaden our understanding of some of
the underlying mechanisms involved in the near field of jet flows originating from non-circular
nozzles. Our primary objective is to assess the influence of the nozzle on the subsequent
evolution of the jet flows and their mixing characteristics. This is facilitated by analyzing
the processes involved in entrainment. Six nozzle geometries are considered: circular, elliptic,
square, rectangular, and triangular (equilateral and isosceles). Simulations are of a duration
sufficient to determine statistics up to second moments. The flow fields produced by these
jets are analyzed to determine the advantages and/or th. drawbacks of non-circular nozzles
for mixing enhancement, as compared with a circular nozzle. Consideration of these nozzles
is motivated, at least partly, by recent experimental findings alluding to their capabilities in
facilitating efficient turbulent combustion systems (e.g. Ref. [18]). The emphasis here is on
extracting detailed information from the numerical simulations to complement the results
obtained in laboratory experiments. Details of the geometrical configurations considered are
given in Section 2. Results pertaining to hydrodynamic transport and those for the analysis
of mixing-controlled reacting flows are presented in Section 3. A summary and conclusions

are furnished in Section 4.

2 Description of the Problem

The flow configurations are produced by unsteady, 3D, spatially-developing jets in the pres-
ence of a co-flowing free-stream. The evolution of the flow is considered for several different

inflow conditions. These conditions are produced via six different nozzle configurations:




circular, elliptic, square, rectangular, triangular (equilateral and isosceles); see table 1 and
figure 1. The aspect-ratio for the elliptical, rectangular, and isosceles triangular jets is 2:1
(for the isosceles triangle the ratio refers to that of the height to the base). The dimensions
in each jet are set in such a way as to yield the same equivalent diameter, D,. This diameter
corresponds to that of a circle with an equivalent area. The flow field is considered within
the domain identified by Cartesian coordinates z (stream-wise), and y, z (cross-stream); see

figure 1 for the orientation of the coordinates with respect to the cross sections of the jets.

The analysis is based on the numerical simulations of the compressible =-Stokes equa-
tions, the energy conservation, and a passive scalar conservation equation .:th Fourier heat
conduction and Fickian diffusion assumptions. These equations are solved numerically with-
out resorting to any turbulence or imposed subgrid models. The fluid is assumed calorically
perfect and the magnitudes of the kinematic viscosity, thermal conductivity, and scalar dif-
fusion coefficients are assumed constant. The values of the Prandtl number and the Schmidt
number are set to unity and the ratio of the specific heats is set equal to 1.4. The fluid
density and the temperature at the inflow are uniform and are set to p = 1.0kg/m® and
T = 300K, respectively. The jet exit velocity is U. = 86.8m/s, and the co-flowing free-
stream is Uy, = 17.4m/s. In all the cases, the flows are initialized with identical Reynolds
number, Re = AUD., /v, where AU = U, — U,, and v denotes the kinematic viscosity. This
implies Re = 800 for the jets with D, = 0.02m. The Mach numbers at the two streams
are M = 0.25 and M = 0.05, respectively. This yields a convective Mach number [26] of

M. = 0.15 which is sufficiently low to not cause significant compressibility effects.

In order to provide a measure of the extent of mixing, the transport of a conserved scalar
variable J is considered. This scalar is initialized in such a way as to yield the limiting
values of 0 and 1 in the jet and in the free stream, respectively. The transport of this
scalar determines the limiting rate of reactant conversion in a binary chemical reaction of
the type “Fuel + Oxidizer — Products.” With the usual definition of the Shvab-Zeldovich
variable {27], the limiting values J = 0,1 correspond to pure fuel and to pure oxidizer,
respectively. In this way, effectively, the maximum rate of product formation of a fuel jet

issuing into a co-flowing oxidizer is being simulated. With the assumption of unity mass
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fractions at the feeds of each of the two respective reactants, J, = 1/2 corresponds to the
stoichiometric surface where, by definition, the rate of chemical reaction is infinitely fast and

the product mass fraction is unity.

Several other parameters are calibrated in order to facilitate a direct comparison of the flow
field produced by the jets. The flow is initialized by a “smooth” top-hat stream-wise velocity
profile at the jet exit. The normalized cross-stream gradient of the Shvab-Zeldovich scalar is
the same as that of the stream-wise mean velocity distribution. The velocity and the scalar
gradients at the inlet are adjusted such that all inflows have identical momentum inflow and
product thickness (8p(z) = [ f; < pYp > dydz; where < > indicates the time average).
The ratio of the maximum to minimum value of momentum thickness (denoted by 6,) at
the exit of the jets is listed in table 1. These values are in good agreement with those in the
experiments [13,12]. In addition to the base flow, low frequency perturbations are added
at the inflow. The forcing is with the same Strouhal number, Stp, = %’3’ = 0.4 in all the
jets. The integrated perturbed momentum is held constant for all jets. The amplitude of
the velocity perturbation is set at approximately 15% of the jet exit velocity to expedite the

formation of large scale structures within the domain considered.

The computational scheme is based on an explicit time marching procedure by means of a
monotone Flux Corrected Transport (FCT) finite difference algorithm [28]. The algorithm
used here is second order accurate in time, fourth order phase accurate in space and has
been successfully employed in transitional shear layer studies [24,29]. At the outflow, the
first derivatives of the variables are assumed zero. Free slip conditions are employed at the
boundaries in the cross-stream directions. The grid configuration consists of 120 x 95 x 95
nodes for the unity aspect-ratio jets and varies slightly for the remaining cases. In all
cases, the grid is compressed at the location of maximum mean gradients to provide a finer
resolution. The computational requirements associated with each simulation vary slightly
from one simulation to the other. In total, approximately 500 hours of CPU time on a Cray-
YMP supercomputer were required to complete this study. The resolution employed here is
to a large extent dictated by the available computational resources. With the magnitudes

of the physical parameters considered, this resolution is less than that required to resolve




the Kolmogorov length scale. No explicit models are employed for the closure of subgrid
fluctuations; the numerical dissipation inherent in the FCT algorithm provides the only
means of modeling such fluctuations [30]. For “debates” on the usage of an appropriate
label (DNS or LES) for these simulations we refer to Boris [31] and Givi [32].

3 Results

Simulations are performed within a domain laige enough to accommodate for the growth
of the jets and to minimize the effects of boundaries in the cross-stream direction. With
available computational resources, it is possible to consider a domain with L, = 9D,, and
L, = L, ~ 4D,, where L; denotes the length in the i-th direction. The simulated results
are analyzed both instantaneously and statistically. The instantaneous results provide an
effective means of flow visualization whereas the statistical data are useful for comparative
assessments with laboratory data. Of course with the low value of the Reynolds number
considered, it is not possible to make quantitative comparisons with such data. Qualitative

comparisons; nevertheless, are possible and are made.

3.1 Flow Visualization

A qualitative assessment of the formation and dynamics of large scale flow vortical structures
formed at the near field of the jets is possible by examining the instantaneous surfaces of
constant vorticity magnitude. Figure 2 represents an iso-surface of vorticity magnitude for
the non-cornered jets of Run 1 and Run 2. Part (a) of this figure shows that for the circular
jet the growth of perturbations introduced at the inflow results in circular vortex-ring-like
structures [33]. The shape and the dynamics of the structures formed in the elliptic jet are
markedly different as shown in figure 2(b). The structures observed in this figure show the
azimuthal variation of the vorticity magnitude. This variation is due to the initial shape of

the ellipse which causes a non-uniform self-induction velocity leading to a three-dimensional




deformation. The iso-surfaces of vorticity magnitude for Runs 3 and 4 are shown in figure
3. This figure suggests that as the aspect ratio is increased, the initial structure of the jet
is less preserved. The triangular jets (Run 5 and Run 6) exhibit different characteristics as
observed in figure 4. In these jets, larger scale structures are produced near the flat surfaces
and are masked by small scale structures produced near the corners. As a result, the flows
appear to be characterized by a much more “turbulent” vorticity distribution than those

produced by the other jets.

3.2 Statistical Consideration

The statistical analysis of the generated data is based on an ensemble of 1200 realizations.
This is conducted within a time period equal to 2.5 times the residence time of the flow
within the domain considered. The downstream evolution of the mean stream-wise velocity
profiles in both cross-stream directions is shown in figure 5. All distances are normalized by
the equivalent diameter (e.g. z* = z/D,). In the circular jet (figure 5(a)), it is apparent that
the velocity profiles in the vertical and the horizontal center-planes are very similar. This
suggests the radial symmetry of the flow and indicates adequacy of the numerical resolution.
This is not the case for the elliptic jet (figure 5(b)). In this case, the width of the profile
in the major plane is observed to contract for the first four equivalent diameters, and then
to expand slowly. In contrast, the width in the minor plane spreads rapidly throughout the
evolution. This trend is in good agreement with that observed in previous investigations
(e.g. Ref. [12]). An interesting feature observed in this figure is the formation of shoulders
on the minor plane velocity profiles downstream of z* = 6. This is associated with the cross-
stream mean secondary flow, as will be discussed in section 3.3. The results for the square
jet (figure 5(c)) show that the profiles in both planes are very similar and grow uniformly in
the stream-wise direction. Downstream of z* = 5, two additional peaks appear on the mean
velocity profiles. They are formed as a result of the induced flow field of the stream-wise
vortices (section 3.3). No contraction of the width of the profiles is observed in either axes of

the rectangular jet (figure 5(d)). For z* > 5 the width along the minor axis becomes larger




than that along the major axis. This behavior is different from that observed in the elliptic
jet. The peaks in the velocity profiles are also observed in the rectangular jet and are more
pronounced in the major axis plane. The spread of the two triangular jets, shown in figures
5(e) and 5(f) is the most complex. The contraction and the subsequent expansion of the
profiles in the transverse direction y is observed in both jets. The initial non-symmetry with

respect to the minor axis prevails throughout the entire stream-wise evolution in both jets.

The downstrean: evolution of the normalized mean centerline velocity (Ucr/U.) is shown in
figure 6. This figure shows that the magnitude of this velocity initially rises slightly above
unity due to forcing and then decays. The rate of decay is highest for the isosceles triangular
jet. The variation of the longitudinal fluctuating velocity along the jet centerline is presented
in figure 7. Except for the two triangular jets, a peak intensity occurs at z* = 4.5 for all
cases. As discussed in Ref. [13] the amplitude and location of this peak are dependent on
the value of the Strouhal rumber.

The stream-wise evolution of the mean jet half velocity < U >=< “—I“;'—U"'J > contours is
presented in figure 8 for Runs 2 through Run 6. Each contour represents conditions within
the range 0 < z* < 5, with an increment of z* = 1. Figure 8(a) indicates that at the first
two stream-wise locations, the jet maintains its initial elliptic shape with the major axis in
the y direction. Further uownstream, there is a continuous reduction of the local aspect-
ratio due to a larger spreading of the jet in the minor-axis plane. By z* = 5, the mean
profile is rotated by 90° and the axes are switched. In contrast, the results in figure 8(b)
indicate that the flow field of the square jet does not experience an axis-switching; however,
a 45° rotation is observed. Figure 8(c) portrays the axis-switching of the rectangular jet. A
90° rotation of the major axis is observed. The evolved shape is nearly elliptical except for
small stretching along the y—axis. In triangular configurations, a very different behavior is
experienced (figures 8(d) and 8(e)). In both jets, a 180° “flip-flop” of the original profile is
observed, climaxed with a triangular shaped profile which is nearly equilateral.

The location of axis-switching is determined by monitoring the stream-wise variations of the

major and the minor axis half velocity widths for all the jet configurations. These widths




are non-dimensionalized by D, and are denoted by B and B; for the major- and the minor-
axis, respectively. The stream-wise variations of these widths are shown in figure 9 and the
axis-switching location for each run is listed in table 2. Figure 9(a) indicates that the elliptic
jet switches its axes at z* = 3. The experimental data of the switch-over location for a 2:1
elliptic jet is z* = 2.4 as reported in Ref. [13], and z* = 2.8 as suggested in Ref. [12]. In
the experiments of Ref. [13], the jet is forced at Stp, = 0.4 and the momentum thickness at
the jet exit is uniform. In the experiments of Ref. [12], an unforced jet is considered with a
non-uniform momentum thickness. The square jet does not switch its axes and both widths
grow monotonically in z* as shown in figure 9(b). The switching location for the rectangular
jet is further downstream than that for the elliptic jet (figure 9(c)). This can be attributed
to the influence of corners. As indicated in figure 8(c), the rectangular jet evolves into a
rotated elliptic configuration. It must, therefore, smooth its corners while simultaneously
switching axes. Thus, its spreading rate in the minor plane is slower than that in the elliptic
jet. Figures 9(d) and 9(e) show two axis-switchings for the two triangular jets. In both
jets, Bj initially decreases to a minimum corresponding to the maximum of B}, and then
increases. The first axis-switching in the isosceles triangular jet occurs approximately twice
as far downstream as that in the equilateral triangular jet (table 2). This can be attributed
to the larger aspect-ratio of the isosceles triangular nozzle which results in an initial gap

between the major and the minor axis half widths.

3.3 Entrainment of Free-Stream Fluid

A measure of entrainment of the free-stream fluid provides an effective means of estimating
the mixing efficiency of the jets. Here, the entrainment is quantified by measuring the
difference between the average mass flow rate (conditioned on < J >< 0.99) at a downstream
location Q(z*) and that at the nozzle exit, Q, = Q(z* = 0). Figure 10 shows the normalized
value of this parameter as a function of the stream-wise coordinate. This figure shows that
the isosceles triangular jet entrains nearly 125% of its initial mass flow rate as compared

to 50% obtained for the circular jet. The mass entrained by the other jets fall somewhere




in between these two extremes. Conceptual understanding of the entrainment process is
aided by examining the time-averaged cross-stream velocity vectors. Figures 11-15 show
these vectors for Runs 2 through 6, at stream-wise locations z* = 2, 4, and 6 (except for
Run 3 in which vectors at z* = 1, 4, and 6 are shown). The solid line in these figures
denote the < Uy > iso-line. Stream-wise vortical structures are observed for all the non-
circular jets. The elliptic jet (figure 11) is shown to entrain fluid into the mixing zone along
the y—axis and to eject it along the z—axis. The effect is to contract the major axis of
the jet while simultaneously stretching the minor axis, resulting in axis-switching. Notice
the recirculation pattern caused by the four vortices. The flow field associated with this
recirculation pattern is responsible for the formation of the shoulders observed on the minor
plane velocity profiles presented in figure 5(b). A more complex flow pattern is observed for
the square jet (figure 12). The velocity field induced by the four counter-rotating pairs of
vortices (figure 12(a)) causes an outflow of the fluid on the flat sides and an inflow at the
corners. By z* = 4 the original configuration is rotated by 45° about the y—axis (figure
12(b)). At this location, four additional pairs of vortices are formed inside the original ones.
Farther downstream, the flow pattern induced by these vortices results in further stretching
of the new corners (figure 12(c)). Also, the inner set of vortex pairs are no longer distinct and
tend to lose their identity. As the flow evolves downstream, the induced velocity field due
to the outer set of stream-wise vortex pairs results in the formation of two additional peaks
on the velocity profiles in both the major plane and the minor plane as shown in figure 5(c).
The rectangular jet displays characteristics similar to those of the square and the elliptic jets
(figure 13). Initially, two vortex pairs are formed with their axes coincident with the z—axis.
This enables the jet to adopt an elliptic configuration and to display a recirculation pattern
similar to that in figure 11(a). However, the influence of the jet origin (nozzle geometry) is
not completely lost and the subsequent evolution is considerably different from that of the
elliptic jet. At z* = 4, the cross-section becomes diamond shaped, similar to that in the
square jet at the same location. By z* = 6, four vortex pairs are formed and the shape of
the jet is elliptic with major axis on the z—axis and with a slightly stretched minor axis.
Due to the delay in its axis-switching, the rectangular jet is a relatively inefficient mixer in

the near field. The evolution of the cross-section of the equilateral triangular jet is depicted
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in figure 14. At z* = 2 the profile for this jet adopts an approximate square shape. However,
the flow pattern and the subsequent evolution are clearly different from that in the square
jet. By z* = 4 (figure 14(b)) the profile is heart-shaped with a strong outflow induced by
two vortex pairs located at the corners. The interaction of these vortices continues to distort
the profile downstream (figure 14(c)). For the isosceles triangular jet, figure 15(a) shows the
entrainment from the top corner and the base, and ejection of the fluid from the two long
flat sides. Further downstream, this causes a “flip-flop” of the profile. The fluid is entrained

from the bottom corner and is ejected through the top corners.

The results presented here indicate the influence of large scale structures on the global mixing
process in both circular and non-circular jets. These results also show that near-field mixing

and entrainment is characterized by the induced secondary flow field of the stream-wise

vortices.

3.4 Influence on Reactant Conversion

The consequences of the flow evolution on the rate of reactant conversion in reacting jets are
portrayed by considering the transport of the Shvab-Zeldovich scalar variable, J. Figure 16
depicts the instantaneous stoichiometric surface J = J,, corresponding to the flame sheet,
for each jet. This figure shows a severe distortion of the flame surface in the non-circular
jets. In particular, the two triangular jets show a highly stretched and convoluted topology
with the formation of small scale structures. The extent of distortion of the stoichiometric
surface provides a measure of the combustion efficiency as measured by the magnitude of
the product formation. The downstream evolution of the mean product mass fraction in the
y — = and z — z planes is shown in figure 17. Examination of figure 17(a) indicates that for
the circular jet, the initial reaction occurs along the jet boundaries and proceeds to spread
both outward and inward. The two spikes at z* = 0 are due to finite gradients of the Shvab-
Zeldovich profile at the inflow. For the circular jet it is about eight diameters downstream
before the product reaches the centerline. The profile for the elliptic jet is initially similar to

that of the circular jet. The difference is in the widths of the profiles in the major and the
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minor planes. As the jet evolves downstream, the profiles in the two planes start to differ
and some of the profiles in the minor axis plane develop blunt topped humps (figure 17 (b)).
Similar flat-topped peaks are observed in the profiles in the square and the rectangular jets
(figures 17(c) and 17(d)). The stream-wise vortex pairs (shown in figures 12(c) and 13(c)) are
responsible for increasing mixing in these regions and the reaction takes place over a larger
volume. The square jet profiles portray approximately the same shape in the y—z and z—=z
planes. The rectangular jet for which the initial axis-switching occurs at the stream-wise
location of z* = 6.3 maintains its maximum value of the mean product mass fraction at its
outer edges. Both the equilateral and the isosceles triangular jets (figures 17(e) and 17(f))
are characterized by a large increase in the product formation in the center of the jet as

compared to those in the other jets.

The stream-wise variations of the integrated product thickness are shown in figure 18. This
figure shows that for z* < 3 the extent of products formed in the circular jet is lower than
those in the square and the triangular jets, but is higher than those in the elliptic and the
rectangular jets. In the region 3 < z* < 5 the products formed in all the jets are lower than
that in the circular jet with the exception of the isosceles triangular jet. Further downstream
(z* > 6) all the non-circular jets yield higher values of product thickness as compared to the
circular jet. The results presented in this figure are consistent with those in figure 10 which
indicate that the product formation is directly related to the entrainment. Therefore, the
ratio of the integrated product thickness to the physical area of the jet is considered. This
area refers to regions in the stream-wise planes where < J >< 0.99. This ratio is denoted as
« and is referred to as the cross-stream product density [34,29]. The stream-wise variation
of this ratio is shown in figure 19 for all jets. This figure suggests that after a period of
rapid growth, a plateau at the value of oy & 0.55 is reached in all cases. This provides an
explanation for the correlation between the growth rate of the area and that of the product
thickness. Experimental confirmation of the existence of a plateau value of 4 for higher

Reynolds number turbulent jets is desirable.

The traditional definition of the jet potential core is not very applicable to the quasi-

transitional jets studied here. Pertaining to mixing, a scalar core is defined as the stream-wise
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length of the jet containing pure, unmixed fuel within the non-reacting jets. This corresponds
to J = C. Figure 20 presents the normalized integrated mass of fuel as a function of stream-
wise location. A near linear decrease of fuel mass fraction is observed in all the cases. The
lengths of the scalar cores in all the jets are listed in table 3. The square and the rectangular
jets, with no axis-switching and axis-switching far downstream respectively, have the longest

cores. The shortest core occurs for the isosceles triangular jet.

4 Summary and Concluding Remarks

Detailed numerical experiments are conducted to study the entrainment and mixing charac-
teristics of the flow fields generated by non-circular turbulent jets. Simulations are conducted
of jet flows originating from elliptic, rectangular, and triangular nozzles with aspect-ratios
of 1:1 and 2:1. The results are compared with those of a circular jet of the same equivalent
diameter to deterrnine the relative efficiency of non-circular nozzles in mixing enhancement.
Flow visualization results show that for both cornered and non-cornered jets, large scale
coherent structures are formed. The shape and dynamics of these structures depend on
the azimuthal variation of the curvature of the profiles at the jet exit. The triangular jets
exhibit characteristics markedly different from the other jets. Coherent large scale struc-
tures in these jets are quickly masked by the small scale structures formed at the corners.
In the elliptic and the rectangular jets, the orientations of the cross-sections are modified
by axis-switching. The rectangular jet switches its axes at a stream-wise distance approx-
imately twice that of the elliptic jet. This can be attributed to the effects of the corners.
Although the square jet does not show axis-switching, it is shown that a 45° rotation of
its initial profile results in entrainment of the free-stream fluid. The triangular jets switch
their axes twice. In the isosceles triangular jet, the first axis cross-over occurs approximately
twice as far downstream as that in the equilateral triangle. This is attributed to the larger

aspect-ratio of the isosceles triangular jet.

The entrainment and mixing in the near field of these jets are shown to be characterized by
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the induced mean secondary flow field of the stream-wise vortices. Non-unity aspect-ratios,
sharp corners, and long flat surfaces are important factors in facilitating an efficient mixing
configuration. In the case of the rectangular jet, although it contains many of these fea-
tures, its axes switch too far downstream to cause significant near-field mixing. Although
a non-unity aspect-ratio is important for mixing enhancement, it is not sufficient for large
entrainment in the near-field. The isosceles triangular jet is shown to be the most efficient
mixer. This jet produces the most intricate network of stream-wise vortices which are re-
sponsible for enhanced mixing. The square jet ranks as the second most efficient mixer,
and the circular jet is the least efficient one. A comparison of the flow fields produced by
the two triangular jets reveals that the formation of small scale structures at the corners
does not have a significant influence in entraining the free-stream fluid. The aspect-ratio is
the primary difference between these two jets. The effect of the larger aspect-ratio of the
isosceles triangular jet is to alter the vorticity dynamics in this jet as compared to the equi-
lateral triangular jet. This results in a different stream-wise vorticity pattern which enhances

entrainment.

The limiting rate of the mean reactant conversion in reacting jets in which the fuel is dis-
charged to ambient oxidizer is evaluated by considering the transport of a Shvab-Zeldovich
scalar variable. It is shown that the isosceles triangular jet yields the highest amount of
chemical products, whereas the circular jet yields the lowest. However, the magnitudes
of the cross-stream product density approaches a plateau in all the jets. The magnitudes
at this plateau are approximately the same for all the cases. With the transport of the
Shvab-Zeldovich variable, a scalar core is also defined. It is shown that the 2:1 aspect-ratio

triangular jet has the shortest, and the rectangular jet has the longest core.

The examination of the effects of harmonic forcing and the role of the initial momentum
thickness on the subsequent development of jet flows under the influence of non-equilibrium

chemical reactions are the subject of our current investigations.
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Figure Captions

Figure 1. Jet profiles as represented by Uj contours.

Figure 2. Surfaces of constant vorticity magnitude (jw|/|w|max = 0.55). (a) Run 1, (b) Run
2.

Figure 3. Surfaces of constant vorticity magnitude (|w]/|w|msx = 0.55). (a) Run 3, (b) Run
4.

Figure 4. Surfaces of constant vorticity magnitude (Jw|/|w|max = 0.60). (2) Run 5, (b) Run
6.

Figure 5. Stream-wise evolution of < U > in both y — z and 2z — z planes. Scale: One
stream-wise equivalent diameter corresponds to 100 m/s. (a) Circular jet, (b) Elliptic jet,
(c) Square jet, (d) Rectangular jet, (¢) Equilateral triangular jet, (f) Isosceles triangular jet.

Figure 6. Downstream evolution of the normalized mean centerline velocity for Runs 1-6.

Figure 7. Downstream evolution of fluctuating centerline velocity for Runs 1-6. Legends are
the same as those in figure 6.

Figure 8. Axis switching as depicted by < U, > contours. Contours are in increments of
z* = 1. (a) Run 2, (b) Run 3, (c) Run 4, (d) Run 5, (¢) Run 6.

Figure 9. Evolution of the jet half width vs. stream-wise direction. (a) Run 2, (b) Run 3,
(c) Run 4, (d) Run 5, (¢) Run 6.

Figure 10. Downstream variation of the entrainment ratio. Legends are the same as those
in figure 6.

Figure 11. Time averaged cross-stream velocity vectors for Run 2. (a) z* =2, (b) z* =4,
(c) z* = 6.

Figure 12. Time averaged cross-stream velocity vectors for Run 3. (a) z* =1, (b) z* =4,
(c) z* = &.

Figure 13. Time averaged cross-stream velocity vectors for Run 4. (a) z* = 2, (b) z* = 4,
(c) z* = 6.

Figure 14. Time averaged cross-stream velocity vectors for Run 5. (a) z* = 2, (b) z* =4,
(c) z* =6.

Figure 15. Time averaged cross-stream velocity vectors for Run 6. (a) z* = 2, (b) z* =4,
(c) z* = 6.

Figure 16. Instantaneous surface of the flame sheet. (a) Run 1, (b) Run 2, (¢) Run 3, (d)
Run 4, (e) Run 5, (f) Run 6.
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Figure 17. Profiles of the mean product mass fraction in the y — z and z — z planes. (a) Run
1, (b) Run 2, (c) Run 3, (d) Run 4, (¢) Run 5, (f) Run 6. Scale: 0.9 stream-wise equivalent

diameter corresponds to unity mass fraction.

Figure 18. Equilibrium product thickness vs. stream-wise direction. Legends are the same
as those in figure 6.

Figure 19. Cross-stream product density vs. stream-wise direction. Legends are the same
as those in figure 6.

Figure 20. Normalized mass of unmixed fuel vs. stream-wise direction. Legends are the
same as those in figure 6.

Tables

Table 1. Flow configurations.
Table 2. Streamwise location(s) of axis switching.

Table 3. Streamwise location of the scalar core.
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“TasLe 4
[Run [ Configuration | Aspect ratio | (6e)max/ (0 )nin .
1 Circle 1:1 1.00
2 " Ellipse 2:1 1.51 '
3 Square 1:1 1.23
4 Rectangle 2:1 1.59
5 Triangle 1:1 1.28 .
6 “Triangle_ 2:1 2.00
TaABLE 2 .
Run | Axis Switch (z*)
1 no switch .
2 3.1
3 no switch
4 6.3 l
5 1.5,4.6
6 2.9,6.5 l
TABLE 3 l
Run | Scalar Core (z*)
1 7.5 l
2 7.0
3 8.0
4 8.5 '
$ 6.5
6 6.0 .
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LARGE EDDY SIMULATION OF TURBULENT REACTING FLOWS
BY ASSUMED PDF METHODS

S.H. Frankel, V. Adumitroaie, C.K. Madnia, and P. Givi
Department of Mechanical and Aerospace Engineering
State University of New York at Buffalo
Buffalo, New York

ABSTRACT

A priori and a posteriori analyses are conducted for validity
assessments of assumed Probability Density Function (PDF)
methods as potential subgrid scale (SGS) closures for Large
Eddy Simulation {(LES) of turbulent reacting flows. Simple
non-premixed reacting systems involving an isothermal re-
action of the type A + B — Products under both chemical
equilibrium and non-equilibrinm conditions are considered.
A priori analyses are conducted of a homogeneous box flow,
and a spatially developing planar mixing layer to investigate
the performance of the Pearson Family of PDF’s as SGS
models. A posteriori analyses are conducted of the mixing
layer using a hybrid one-equation Smagorinsky/PDF SGS
closure. The Smagorinsky closure au. ~ted by the solu-
tion of the subgrid turbulent kinetic TKE) equation
is employed to account for hydrodyr uctuations, and
the PDF is employed for modeling the cficcts of scalar fluctu-
ations. The implementation of the model requires the knowl-
edge of the local values of the first two SGS moments. These
are provided by additional modeled transport equations. In
both a priori and a posteriori analyses, the predicted results
are appraised by comparison with subgrid averaged results
generated by Direct Numerical Simulations (DNS).

INTRODUCTION

Large Eddy Simulation (LES) is considered somewhere be-
tween Direct Numerical Simulation (DNS) and Reynolds Av-
eraged Navier-Stokes (RANS) computation (Ferziger, 1981;
Ferziger, 1983; Rogallo and Moin, 1984; Ferziger, 1987;
Love, 1979; Ferziger and Leslie, 1979; Voke and Collins, 1983;
Schumann and Friedrich, 1986; Schumman and Friedrich,
1987; Givi, 1989; Jou and Riley, 1989; Reynolds, 1990; Moin,

1991; Galperin and Orszag, 1993). Over the past thirty
years, since the early work of Smagorinsky (1963) there has
been relatively little effort, compared to that in RANS cal-
culations, to make full use of LES for engineering applica-
tions. The most prominent model has been the Smagorin-
sky based eddy viscosity closure which relates the unknown
subgrid scale (SGS) Reynolds stresses to the local large
scale rate of strain. This viscosity is aimed to provide the
role of mimicking the dissipative behavior of the unresolved
small scales. The extensions to one-equation models, typi-
cally based on the SGS turbulent kinetic energy (Lilly, 1967;
Schumman, 1975), have shown some improvements (Horuiti,
1985; Claus et al., 1989). This is particularly the case in sim-
ulating transitional flows where the assumption of a balance
between production and dissipation of turbulent kinetic en-
ergy may not always be valid. Thus, the higher degree of
freedom provided by one-equation closures allow more flex-
ibility for the subgrid scale eddies to adjust to local flow
conditions.

A survey of combustion literature reveals relatively little
work in LES of chemically reacting turbulent flows (Givi,
1989; Pope, 1990). It appears that Schumann (1989) was
one of the first to conduct LES of a reacting flow. However,
the assumption made in this work to simply neglect the con-
tribution of SGS scalar fluctuations to the filtered reaction
rate is debatable. The importance of such fluctuations is
well recognized in RANS of reacting flows in both combus-
tion (Libby and Williams, 1980; Kollmann, 1980; Jones and
Whitelaw, 1982) and chemical engineering (Brodkey, 1975;
Toor, 1975; Hill, 1976; Brodkey, 1981) problems. Therefore,
it is natural to expect that these fluctuations will also have
a significant influence in LES.

Modeling of scalar fluctuations in RANS has been the
subject of intense investigations since the pioneering work
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of Toor (1962). One approach which has proven particularly
useful is based on the Probability Density Function (PDF)
or joint PDF of scalar quantities (Dopazo, 1973; Pope, 1979;
O’Brien, 1980; Pope, 1985; Givi, 1989; Kollmann, 1990;
Pope, 1990). This approach offers the advantage that all the
statistical information pertaining to the scalar field is embed-
ded within the PDF. Therefore, once the PDF is known, the
effects of scalar fluctuations are easily determined. Because
of their capabilities, PDF methods have been widely used
in RANS for a variety of reacting systems (see Pope (1990);
Libby and Williams (1993) for recent reviews). A systematic
approach for determining the PDF is by means of solving the
transport equation governing its evolution (Lundgren, 1967;
Lundgren, 1969). In this equation the effects of chemical
reactions appear in a closed form. However, modeling is
needed to account for transport of the PDF in the domain
of the random variabies. This transport describes the role of
molecular action on the evolution of PDF. In addition, there
is an extra dimensionality associated with the composition
domain which must be treated. These two problems have
constituted a stumbling block in utilizing PDF methods in
practical applications, and developments of turbulence clo-
sures and numerical schemes which can effectively deal with
these predicaments have been the subject of numerous in-
vestigations within the past two decades.

An alternative approach in PDF modeling is based on
assumed methods. In these methods the PDF is not deter-
mined by solving a transport equation. Rather, its shape
is assumed a priori, usually in terms of the low order mo-
ments of the random variable(s). Obviously, this method is
ad hoc but it offers more flexibility than the first approach.
Presently, the use of assumed methods in RANS is justi-
fied in cases where there is strong evidence that the PDF
assumes a particular distribution.

Among these two approaches, obviously the first one
is preferable if an appropriate closure is available to ac-
count for the effects of molecular action. In its applica-
tion in RANS, traditionally, the family of models based
on the coalescence/dispersion (C/D) closures (Curl, 1963;
Janicka et al., 1979; Norris and Pope, 1991), or least mean
square methods (Dopazo and O’Brien, 1976) have been em-
ployed. These closures are plausible from a computational
standpoint and can be effectively simulated via Monte Carlo
numerical methods (Pope, 1981). However, there are sev-
eral drawbacks associated with these closures that restrict
their use for accurate and reliable predictions (Pope, 1982;
Kosaly and Givi, 1987). Some of these drawbacks are over-
come in the newly developed Amplitude Mapping Closure
(AMC) (Kraichnan, 1989; Chen et al., 1989). This has
been established in a number of recent validation assess-
ments of the AMC by means of comparison of its predicted
results with those of DNS (Pope, 1991; Madnia et al., 1992;
Jiang et al., 1992; Frankel et al., 1993), and experimental
(Frankel et al., 1992a) data.

Despite its demonstrated properties, there are some de-

ficiencies associated with the AMC which require further
investigations. These are discussed in detail by Miller et al.
(1993a); the most serious of these are: (1) the “single-point”
nature of the closure, (2) the difficulties associated with its
numerical implementation, and (3) its inability to account
for the migration of scalar bounds as mixing proceeds. The
first problem is shared with C/D models and indicates the
deficiency of the approach in accounting for the variation of
turbulent length (or time) scales. The other problems are
exclusive to AMC and can cause difficulties in its applica-
tions.

Considering the current state of affairs in PDF modeling,
it can be cautiously concluded that assumed PDF methods
are somewhat more “feasible” than the transport equation
approach for simulating practical problems. This is not to
advocate the superiority of assumed methods. Rather, it
is to encourage further research on the first approach be-
fore it can be implemented routinely. In this regard, in
several recent studies Miller et al. (1993a) and Frankel et
al. (1993) have conducted detailed investigations pertaining
to both these approaches. The general conclusion drawn
from these studies is that in cases where the AMC has
proven useful, other approaches based on assumed proba-
bility distributions are also effective. In the cases considered
by Miller et al. (1993a), it is shown that in simple flows
where the AMC can be employed, the class of PDF’s based
on Johnson Edgeworth Translation (JET) (Johnson, 1949a;
Edgeworth, 1907) can also be used. In fact, for the simple
problem of binary mixing in isotropic turbulence - a stan-
dard test case - the solution generated by AMC (Pope, 1991;
Gao, 1991) can be viewed as a member of the JET family.
Furthermore, due to established similarities of JET with the
simpler distributions belonging to the Pearson Family (PF)
of PDF’s (Pearson, 1895), it can be argued that the PF can
also be considered as a viable alternative.

In turbulent combustion there has been widespread use
of PF assnmed PDF’s (e.g. Rhodes (1975); Jones and Prid-
din (1978); Lockwood and Moneib (1980); Peters (1984);
Janicka and Peters (1982); Frankel et al. (1990); for recent
reviews see Williams (1985); Givi (1989); Priddin (1991)).
In most applications to date, this family has been used
in the form of the Beta density of the first kind (Pear-
son Type I and Type II distributions). This is due to
the flexibility of this density in portraying bimodal dis-
tributions. The capabilities of this density for the pur-
pose 